XX1007-BD

Doubler
13.5-17.0/27.0-34.0 GHz

Features
- Integrated Gain, Doubler and Driver Stages
- Self-biased Architecture
- +21.0 dBm Output Saturated Power
- 40.0 dBc Fundamental Suppression
- On-Chip ESD Protection
- 100% On-Wafer RF, DC & Output Power Testing
- 100% Visual Inspection to MIL-STD-883 Method 2010
- RoHS* Compliant and 260°C Reflow Compatible

Description
M/A-COM Tech’s 13.5-17.0 / 27.0-34.0 GHz GaAs MMIC doubler integrates a gain stage, passive doubler and driver amplifier onto a single device. The XX1007-BD has a self-biased architecture requiring a single positive supply (+5V) only and integrated on-chip bypassing capacitor eliminating the need for external capacitor. This MMIC uses M/A-COM Tech’s GaAs PHEMT device model technology, and is based upon electron beam lithography to ensure high repeatability and uniformity. The chip has integrated ESD structures for protection and surface passivation to protect and provide a rugged part with backside via holes and gold metallization to allow either a conductive epoxy or eutectic solder die attach process. This device is well suited for Millimeter wave Point-to-Point Radio, LMDS, SATCOM and VSAT applications.

Functional Block Diagram

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX1007-BD-000V</td>
<td>“V” - vacuum release gel paks</td>
</tr>
<tr>
<td>XX1007-BD-EV1</td>
<td>evaluation module</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (Vd)</td>
<td>+6.0 VDC</td>
</tr>
<tr>
<td>Supply Current (Id)</td>
<td>300 mA</td>
</tr>
<tr>
<td>Gate Bias Voltage (Vg)</td>
<td>+0.3 VDC</td>
</tr>
<tr>
<td>Input Power (RF Pin)</td>
<td>TBD</td>
</tr>
<tr>
<td>Storage Temperature (Tstg)</td>
<td>-65 to +165 °C</td>
</tr>
<tr>
<td>Operating Temperature (Ta)</td>
<td>-55 to MTTF Table¹</td>
</tr>
<tr>
<td>Channel Temperature (Tch)</td>
<td>MTTF Table¹</td>
</tr>
</tbody>
</table>

(1) Channel temperature directly affects a device’s MTTF. It is recommended to keep channel temperature as low as possible to maximize lifetime.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

Visit www.macomtech.com for additional data sheets and product information.
Electrical Specifications: 13.5-17 GHz (fin) (Ambient Temperature T = 25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Frequency Range (fout)</td>
<td>GHz</td>
<td>27.0</td>
<td>-</td>
<td>34.0</td>
</tr>
<tr>
<td>Input Return Loss (S11)</td>
<td>dB</td>
<td>-</td>
<td>-8.0</td>
<td>-</td>
</tr>
<tr>
<td>Output Return Loss (S22)</td>
<td>dB</td>
<td>-</td>
<td>-10.0</td>
<td>-</td>
</tr>
<tr>
<td>Fundamental Level at the Output</td>
<td>dBc</td>
<td>-28.0</td>
<td>-35.0</td>
<td>-</td>
</tr>
<tr>
<td>RF Input Power (RF Pin)</td>
<td>dBm</td>
<td>-</td>
<td>+8.0</td>
<td>-</td>
</tr>
<tr>
<td>Output Power at 8.0 dBm Pin (Pout)</td>
<td>dBm</td>
<td>+16.0</td>
<td>+21.0</td>
<td>-</td>
</tr>
<tr>
<td>Drain Bias Voltage (Vd)</td>
<td>VDC</td>
<td>-</td>
<td>+5.0</td>
<td>+5.5</td>
</tr>
<tr>
<td>Supply Current (Id1,2,3) (Vd=5.0V Typical)</td>
<td>mA</td>
<td>-</td>
<td>200</td>
<td>240</td>
</tr>
</tbody>
</table>
Typical Performance Curves

- **Pout at 2Fin and Pin, at Pin of 0 and +10dBm**
 - X-axis: Tone 0 freq (GHz)
 - Y-axis: Tone 1 level (dBm)

- **Pout (2Fin) at FFin=15GHz**
 - X-axis: Pin (dBm)
 - Y-axis: Tone 1 level (dBm)

- **Idt (mA) vs. Tone 0 freq (GHz) at 0, +5, and +10 dBm input power**
 - X-axis: Tone 0 freq (GHz)
 - Y-axis: Idt (mA)

- **Supply Current for different Vdd: Idt (mA) vs. DUT in 1 power (dBm)**
 - X-axis: DUT in 1 power (dBm)
 - Y-axis: Idt (mA)

- **Input Return Loss at VD = 4.5 and 5 V: dB(S11) vs. Freq**
 - X-axis: Freq
 - Y-axis: dB(S11)

- **Output Return Loss at VD = 4.5 and 5 V: dB(S22) vs. Freq**
 - X-axis: Freq
 - Y-axis: dB(S22)
Doubler
13.5-17.0/27.0-34.0 GHz

Typical Performance Curves

S11 and S22 over 0 to 40 GHz

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
XX1007-BD

Doubler
13.5-17.0/27.0-34.0 GHz

Bias Arrangement

\[V_d = 5V \]

RF IN \hspace{0.5cm} 1 \hspace{0.5cm} 2 \hspace{0.5cm} 3 \hspace{0.5cm} RF OUT

Physical Dimensions

XX1007-BD (300BL0892)

X = 1500
Y = 800

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
XX1007-BD

Doubler
13.5-17.0/27.0-34.0 GHz

MTTF Tables (TBD)
These numbers were calculated based on accelerated life test information and thermal model analysis received from the fabricating foundry.

<table>
<thead>
<tr>
<th>Backplate Temperature</th>
<th>Channel Temperature</th>
<th>Rth</th>
<th>MTTF Hours</th>
<th>FITs</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 deg Celsius</td>
<td>deg Celsius</td>
<td>C/W</td>
<td>E+</td>
<td>E+</td>
</tr>
<tr>
<td>75 deg Celsius</td>
<td>deg Celsius</td>
<td>C/W</td>
<td>E+</td>
<td>E+</td>
</tr>
<tr>
<td>95 deg Celsius</td>
<td>deg Celsius</td>
<td>C/W</td>
<td>E+</td>
<td>E+</td>
</tr>
</tbody>
</table>

Bias Conditions: Vd=5.0V, Id=200mA

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 2 devices.