Power Amplifier
37.0 - 40.0 GHz

Features
- Linear Power Amplifier
- On-Chip Power Detector
- Output Power Adjust
- 25.0 dB Small Signal Gain
- +27.0 dBm P1dB Compression Point
- +38.0 dBm OIP3
- Lead-Free 7 mm 28-lead SMD Package
- RoHS* Compliant and 260°C Reflow Compatible

Description
The XP1080-QU is a four stage 37.0-40.0 GHz packaged GaAs MMIC power amplifier that has a small signal gain of 25.0 dB with a +38.0 dBm Output Third Order Intercept. The amplifier contains an integrated, temperature compensated, on-chip power detector. This MMIC uses M/A-COM Technology Solutions’ GaAs pHEMT device model technology, and is based upon electron beam lithography to ensure high repeatability and uniformity.

The device comes in a RoHS compliant 7x7mm QFN Surface Mount Package offering excellent RF and thermal properties. This device has been designed for use in 38 GHz Point-to-Point Microwave Radio applications.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>XP1080-QU-0N00</td>
<td>bulk quantity</td>
</tr>
<tr>
<td>XP1080-QU-0N0T</td>
<td>tape and reel</td>
</tr>
<tr>
<td>XP1080-QU-EV1</td>
<td>evaluation module</td>
</tr>
</tbody>
</table>

1. The exposed pad centered on the package bottom must be connected to RF and DC ground.
Power Amplifier
37.0 - 40.0 GHz

Electrical Specifications: 37-40.15 GHz (Ambient Temperature T = 25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Return Loss (S11)</td>
<td>dB</td>
<td>10.0</td>
<td>14.0</td>
<td>-</td>
</tr>
<tr>
<td>Output Return Loss (S22)</td>
<td>dB</td>
<td>4.0</td>
<td>8.0</td>
<td>-</td>
</tr>
<tr>
<td>Small Signal Gain (S21)</td>
<td>dB</td>
<td>21.0</td>
<td>25.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Gain Flatness (∆S21)</td>
<td>dB</td>
<td>-</td>
<td>+/-1.0</td>
<td>-</td>
</tr>
<tr>
<td>Reverse isolation (S12)</td>
<td>dB</td>
<td>-</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Output Power for 1dB Compression Point (P1dB)</td>
<td>dBm</td>
<td>-</td>
<td>27.0</td>
<td>-</td>
</tr>
<tr>
<td>Output IMD3 with Pout (scl) = 14 dBm</td>
<td>dBc</td>
<td>43.0</td>
<td>48.0</td>
<td>-</td>
</tr>
<tr>
<td>Output IP3</td>
<td>dBm</td>
<td>35.5</td>
<td>+38.0</td>
<td>-</td>
</tr>
<tr>
<td>Drain Bias Voltage (Vd)</td>
<td>VDC</td>
<td>-</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Gate Bias Voltage (Vg)</td>
<td>VDC</td>
<td>-1.0</td>
<td>-0.3</td>
<td>-0.1</td>
</tr>
<tr>
<td>Supply Current (Id1) (Vd=4.0V, Vg=-0.3V)</td>
<td>mA</td>
<td>-</td>
<td>1000</td>
<td>1200</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (Vd)</td>
<td>+4.3 V</td>
</tr>
<tr>
<td>Gate Bias Voltage (Vg)</td>
<td>1.5 V < Vg < 0 V</td>
</tr>
<tr>
<td>Input Power (Pin)</td>
<td>15 dBm</td>
</tr>
<tr>
<td>Abs. Max Junction/Channel Temp</td>
<td>MTTF Graph 1</td>
</tr>
<tr>
<td>Max. Operating Junction/Channel Temp</td>
<td>175°C</td>
</tr>
<tr>
<td>Continuous Power Dissipation (Pdiss) at 85 °C</td>
<td>7.0 W</td>
</tr>
<tr>
<td>Thermal Resistance (Tchannel=150°C)</td>
<td>12°C/W</td>
</tr>
<tr>
<td>Operating Temperature (Ta)</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature (Tstg)</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Mounting Temperature</td>
<td>See solder reflow profile</td>
</tr>
<tr>
<td>ESD Min. - Machine Model (MM)</td>
<td>Class A</td>
</tr>
<tr>
<td>ESD Min. - Human Body Model (HBM)</td>
<td>Class 1A</td>
</tr>
<tr>
<td>MSL Level</td>
<td>MSL3</td>
</tr>
</tbody>
</table>

2. Channel temperature directly affects a device’s MTTF. Channel temperature should be kept as low as possible to maximize lifetime.

3. For saturated performance it recommended that the sum of (2*Vdd + abs (Vgg)) <9V

Recommended Layout

VD1 VD2 VD3
RF IN

VG1 VG2 VG3 VREF VDET
RF OUT

Recommended Decoupling Capacitors: 100pF 0402
10µF 0805

Recommend to externally ground all NC pins
XP1080-QU

Power Amplifier
37.0 - 40.0 GHz

Typical Performance Curves

XP1080-QU-0N00: Small signal Gain (S21)
Vd=4.0V, Id=1000mA

XP1080-QU-0N00: Input Return Loss (S11)
Vd=4.0V, Id=1000mA

XP1080-QU-0N00: Output Return Loss (S22)
Vd=4.0V, Id=1000mA

XP1080-QU-0N00: Reverse Isolation (S12)
Vd=4.0V, Id=1000mA

XP1080-QU-0N00: Output IP3 vs Freq
Vd=4V, Id=1000mA

XP1080-QU-0N00: C/I3 vs Freq
Pscl=14dBm, Vd=4V, Id=1000mA

XP1080-QU-0N00: Reverse Isolation (S12)
Vd=4.0V, Id=1000mA

XP1080-QU-0N00: Input Return Loss (S11)
Vd=4.0V, Id=1000mA

XP1080-QU-0N00: Small signal Gain (S21)
Vd=4.0V, Id=1000mA

XP1080-QU-0N00: Output Return Loss (S22)
Vd=4.0V, Id=1000mA

XP1080-QU-0N00: Reverse Isolation (S12)
Vd=4.0V, Id=1000mA

XP1080-QU-0N00: Output IP3 vs Freq
Vd=4V, Id=1000mA

XP1080-QU-0N00: C/I3 vs Freq
Pscl=14dBm, Vd=4V, Id=1000mA
XP1080-QU Power Amplifier
37.0 - 40.0 GHz

Typical Performance Curves (cont.)

XP1080-QU: P1dB vs Freq
Vd=4V, Id=1000mA

XP1080-QU: Psat vs Freq
Vd=4V, Id=1000mA

XP1080-QU: Detector Output (Diff) vs Freq
Vd=4V, Id=1000mA, Vdet/ref Bias = +5V/100k
MTTF

MTTF hours vs Package Base Temperature

Vd=4V, Id=1000mA

Tch(max) vs Package Base Temperature

Vd=4V, Id=1000mA

Operating Power De-rating Curve (continuous)
App Note [1] Biasing - It is recommended to bias the amplifier with Vd=4.0 V and Id=1000 mA. It is also recommended to use active biasing to keep the currents constant as the RF power and temperature vary; this gives the most reproducible results. Depending on the supply voltage available and the power dissipation constraints, the bias circuit may be a single transistor or a low power operational amplifier, with a low value resistor in series with the drain supply used to sense the current. The gate of the pHEMT is controlled to maintain correct drain current and thus drain voltage. The typical gate voltage needed to do this is -0.3V. Typically the gate is protected with Silicon diodes to limit the applied voltage. Also, make sure to sequence the applied voltage to ensure negative gate bias is available before applying the positive drain supply.

App Note [2] Bias Arrangement - Each DC pin (Vd1,2,3 and Vg1,2,3) needs to have DC bypass capacitance (10 nF/1 µF) as close to the package as possible.

App Note [3] Power Detector - As shown in the schematic below, the power detector is implemented by providing +5 V bias and measuring the difference in output voltage with standard op-amp in a differential mode configuration.
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.