XP1080-QU

Power Amplifier

37.0 - 40.0 GHz

Rev. V2

Features

- Linear Power Amplifier
- On-Chip Power Detector
- Output Power Adjust
- 25.0 dB Small Signal Gain
- +27.0 dBm P1dB Compression Point
- +38.0 dBm OIP3
- Lead-Free 7 mm 28-lead SMD Package
- RoHS* Compliant and 260°C Reflow Compatible

Description

The XP1080-QU is a four stage 37.0-40.0 GHz packaged GaAs MMIC power amplifier that has a small signal gain of 25.0 dB with a +38.0 dBm Output Third Order Intercept. The amplifier contains an integrated, temperature compensated, on-chip power detector. This MMIC uses M/A-COM Technology Solutions’ GaAs pHEMT device model technology, and is based upon electron beam lithography to ensure high repeatability and uniformity.

The device comes in a RoHS compliant 7x7mm QFN Surface Mount Package offering excellent RF and thermal properties. This device has been designed for use in 38 GHz Point-to-Point Microwave Radio applications.

Functional Schematic

![Functional Schematic Diagram]

Pin Configuration

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Function</th>
<th>Pin No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RF Input</td>
<td>9</td>
<td>RF Output</td>
</tr>
<tr>
<td>2</td>
<td>Gate Bias, Stage 1</td>
<td>10</td>
<td>Drain Bias for Stage 1</td>
</tr>
<tr>
<td>3</td>
<td>Gate Bias, Stage 2</td>
<td>11</td>
<td>Drain Bias for Stage 2</td>
</tr>
<tr>
<td>4</td>
<td>Gate Bias, Stage 3</td>
<td>12</td>
<td>Drain Bias for Stage 3</td>
</tr>
<tr>
<td>5-6</td>
<td>Not Connected</td>
<td>13,14</td>
<td>Not Connected</td>
</tr>
<tr>
<td>7</td>
<td>Detector Reference Output</td>
<td>15</td>
<td>PDC</td>
</tr>
<tr>
<td>8</td>
<td>Detector Output</td>
<td>16</td>
<td>PDA</td>
</tr>
</tbody>
</table>

1. The exposed pad centered on the package bottom must be connected to RF and DC ground.

XP1080-QU

Power Amplifier

37.0 - 40.0 GHz

Electrical Specifications: 37-40.15 GHz (Ambient Temperature T = 25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Return Loss (S11)</td>
<td>dB</td>
<td>10.0</td>
<td>14.0</td>
<td>-</td>
</tr>
<tr>
<td>Output Return Loss (S22)</td>
<td>dB</td>
<td>4.0</td>
<td>8.0</td>
<td>-</td>
</tr>
<tr>
<td>Small Signal Gain (S21)</td>
<td>dB</td>
<td>21.0</td>
<td>25.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Gain Flatness (ΔS21)</td>
<td>dB</td>
<td>-</td>
<td>+/-1.0</td>
<td>-</td>
</tr>
<tr>
<td>Reverse isolation (S12)</td>
<td>dB</td>
<td>-</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Output Power for 1dB Compression Point (P1dB)</td>
<td>dBm</td>
<td>-</td>
<td>27.0</td>
<td>-</td>
</tr>
<tr>
<td>Output IMD3 with Pout (scl) = 14 dBm</td>
<td>dBc</td>
<td>43.0</td>
<td>48.0</td>
<td>-</td>
</tr>
<tr>
<td>Output IP3</td>
<td>dBm</td>
<td>35.5</td>
<td>+38.0</td>
<td>-</td>
</tr>
<tr>
<td>Drain Bias Voltage (Vd)</td>
<td>VDC</td>
<td>-</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Gate Bias Voltage (Vg)</td>
<td>VDC</td>
<td>-1.0</td>
<td>-0.3</td>
<td>-0.1</td>
</tr>
<tr>
<td>Supply Current (Id1) (Vd=4.0V, Vg=-0.3V)</td>
<td>mA</td>
<td>-</td>
<td>1000</td>
<td>1200</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (Vd)</td>
<td>+4.3 V</td>
</tr>
<tr>
<td>Gate Bias Voltage (Vg)</td>
<td>1.5 V < Vg < 0 V</td>
</tr>
<tr>
<td>Input Power (Pin)</td>
<td>15 dBm</td>
</tr>
<tr>
<td>Abs. Max Junction/Channel Temp</td>
<td>MTTF Graph 1</td>
</tr>
<tr>
<td>Max. Operating Junction/Channel Temp</td>
<td>175°C</td>
</tr>
<tr>
<td>Continuous Power Dissipation (Pdiss) at 85 °C</td>
<td>7.0 W</td>
</tr>
<tr>
<td>Thermal Resistance (Tchannel=150°C)</td>
<td>12°C/CW</td>
</tr>
<tr>
<td>Operating Temperature (Ta)</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature (Tstg)</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Mounting Temperature</td>
<td>See solder reflow profile</td>
</tr>
<tr>
<td>ESD Min. - Machine Model (MM)</td>
<td>Class A</td>
</tr>
<tr>
<td>ESD Min. - Human Body Model (HBM)</td>
<td>Class 1A</td>
</tr>
<tr>
<td>MSL Level</td>
<td>MSL3</td>
</tr>
</tbody>
</table>

2. Channel temperature directly affects a device's MTTF. Channel temperature should be kept as low as possible to maximize lifetime.
3. For saturated performance it recommended that the sum of \((2V_{dd} + \text{abs}(V_{gg})) < 9V\)

Recommended Layout

![Recommended Layout Diagram](image)

- **Recommended Decoupling Capacitors:** 100pF 0402, 10µF 0805
- Recommend to externally ground all NC pins
XP1080-QU

Power Amplifier
37.0 - 40.0 GHz

Typical Performance Curves

XP1080-QU-0N00: Small signal Gain (S21)
Vd=4.0V, Id=1000mA

XP1080-QU-0N00: Input Return Loss (S11)
Vd=4.0V, Id=1000mA

XP1080-QU-0N00: Output Return Loss (S22)
Vd=4.0V, Id=1000mA

XP1080-QU-0N00: Reverse Isolation (S12)
Vd=4.0V, Id=1000mA

XP1080-QU-0N00: Output IP3 vs Freq
Vd=4V, Id=1000mA

XP1080-QU-0N00: C/I3 vs Freq
Pscl=14dBm, Vd=4V, Id=1000mA

XP1080-QU-0N00: Input Return Loss (S11)
Vd=4.0V, Id=1000mA

XP1080-QU-0N00: Output Return Loss (S22)
Vd=4.0V, Id=1000mA

XP1080-QU-0N00: Reverse Isolation (S12)
Vd=4.0V, Id=1000mA

XP1080-QU-0N00: Output IP3 vs Freq
Vd=4V, Id=1000mA

XP1080-QU-0N00: C/I3 vs Freq
Pscl=14dBm, Vd=4V, Id=1000mA
XP1080-QU

Power Amplifier
37.0 - 40.0 GHz

Typical Performance Curves (cont.)

XP1080-QU: P1dB vs Freq
Vd=4V, Id=1000mA

XP1080-QU: Psat vs Freq
Vd=4V, Id=1000mA

XP1080-QU: Detector Output (Diff) vs Freq
Vd=4V, Id=1000mA, Vdet/ref Bias = +5V/100k

Visit www.macom.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

• North America Tel: 800.366.2266 / Fax: 978.366.2266
• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
• Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
Power Amplifier

37.0 - 40.0 GHz

MTTF

XP1080-QK-0N00: MTTF hours vs Package Base Temperature

$V_d=4V, I_d=1000mA$

XP1080-QK-0N00: $T_{ch(max)}$ vs Package Base Temperature

$V_d=4V, I_d=1000mA$

XP1080-QK-0N00: Operating Power Derating Curve (continuous)

P_{diss} vs Package Base Temp ($^\circ$C)
App Note [1] Biasing - It is recommended to bias the amplifier with \(V_d = 4.0 \text{ V} \) and \(I_d = 1000 \text{ mA} \). It is also recommended to use active biasing to keep the currents constant as the RF power and temperature vary; this gives the most reproducible results. Depending on the supply voltage available and the power dissipation constraints, the bias circuit may be a single transistor or a low power operational amplifier, with a low value resistor in series with the drain supply used to sense the current. The gate of the pHEMT is controlled to maintain correct drain current and thus drain voltage. The typical gate voltage needed to do this is \(-0.3 \text{ V}\). Typically the gate is protected with Silicon diodes to limit the applied voltage. Also, make sure to sequence the applied voltage to ensure negative gate bias is available before applying the positive drain supply.

App Note [2] Bias Arrangement - Each DC pin (\(V_{d1,2,3} \) and \(V_{g1,2,3} \)) needs to have DC bypass capacitance (10 nF/1 \(\mu \text{F} \)) as close to the package as possible.

App Note [3] Power Detector - As shown in the schematic below, the power detector is implemented by providing +5 V bias and measuring the difference in output voltage with standard op-amp in a differential mode configuration.
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.