Features

- Linear Power Amplifier
- On-Chip Power Detector
- Output Power Adjust
- 25.0 dB Small Signal Gain
- +27.0 dBm P1dB Compression Point
- +38.0 dBm OIP3
- Lead-Free 7 mm 28-lead SMD Package
- RoHS* Compliant and 260°C Reflow Compatible

Description

The XP1080-QU is a four stage 37.0-40.0 GHz packaged GaAs MMIC power amplifier that has a small signal gain of 25.0 dB with a +38.0 dBm Output Third Order Intercept. The amplifier contains an integrated, temperature compensated, on-chip power detector. This MMIC uses M/A-COM Technology Solutions’ GaAs pHEMT device model technology, and is based upon electron beam lithography to ensure high repeatability and uniformity.

The device comes in a RoHS compliant 7x7mm QFN Surface Mount Package offering excellent RF and thermal properties. This device has been designed for use in 38 GHz Point-to-Point Microwave Radio applications.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>XP1080-QU-0N00</td>
<td>bulk quantity</td>
</tr>
<tr>
<td>XP1080-QU-0N0T</td>
<td>tape and reel</td>
</tr>
<tr>
<td>XP1080-QU-EV1</td>
<td>evaluation module</td>
</tr>
</tbody>
</table>

1. The exposed pad centered on the package bottom must be connected to RF and DC ground.

Electrical Specifications: 37-40.15 GHz (Ambient Temperature T = 25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Return Loss (S11)</td>
<td>dB</td>
<td>10.0</td>
<td>14.0</td>
<td>-</td>
</tr>
<tr>
<td>Output Return Loss (S22)</td>
<td>dB</td>
<td>4.0</td>
<td>8.0</td>
<td>-</td>
</tr>
<tr>
<td>Small Signal Gain (S21)</td>
<td>dB</td>
<td>21.0</td>
<td>25.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Gain Flatness (∆S21)</td>
<td>dB</td>
<td>-</td>
<td>+/-1.0</td>
<td>-</td>
</tr>
<tr>
<td>Reverse isolation (S12)</td>
<td>dB</td>
<td>-</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Output Power for 1dB Compression Point (P1dB)</td>
<td>dBm</td>
<td>-</td>
<td>27.0</td>
<td>-</td>
</tr>
<tr>
<td>Output IMD3 with Pout (scl) = 14 dBm</td>
<td>dBc</td>
<td>43.0</td>
<td>48.0</td>
<td>-</td>
</tr>
<tr>
<td>Output IP3</td>
<td>dBm</td>
<td>35.5</td>
<td>+38.0</td>
<td>-</td>
</tr>
<tr>
<td>Drain Bias Voltage (Vd)</td>
<td>VDC</td>
<td>-</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Gate Bias Voltage (Vg)</td>
<td>VDC</td>
<td>-1.0</td>
<td>-0.3</td>
<td>-0.1</td>
</tr>
<tr>
<td>Supply Current (Id1) (Vd=4.0V, Vg=-0.3V)</td>
<td>mA</td>
<td>-</td>
<td>1000</td>
<td>1200</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (Vd)</td>
<td>+4.3 V</td>
</tr>
<tr>
<td>Gate Bias Voltage (Vg)</td>
<td>1.5 V < Vg < 0 V</td>
</tr>
<tr>
<td>Input Power (Pin)</td>
<td>15 dBm</td>
</tr>
<tr>
<td>Abs. Max Junction/Channel Temp</td>
<td>MTTF Graph 1</td>
</tr>
<tr>
<td>Max. Operating Junction/Channel Temp</td>
<td>175°C</td>
</tr>
<tr>
<td>Continuous Power Dissipation (Pdiss) at 85 °C</td>
<td>7.0 W</td>
</tr>
<tr>
<td>Thermal Resistance (Tchannel=150°C)</td>
<td>12°C/W</td>
</tr>
<tr>
<td>Operating Temperature (Ta)</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature (Tstg)</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Mounting Temperature</td>
<td>See solder reflow profile</td>
</tr>
<tr>
<td>ESD Min. - Machine Model (MM)</td>
<td>Class A</td>
</tr>
<tr>
<td>ESD Min. - Human Body Model (HBM)</td>
<td>Class 1A</td>
</tr>
<tr>
<td>MSL Level</td>
<td>MSL3</td>
</tr>
</tbody>
</table>

2. Channel temperature directly affects a device’s MTTF. Channel temperature should be kept as low as possible to maximize lifetime.

3. For saturated performance it recommended that the sum of \((2\times Vdd + abs (Vgg)) <9V\)
XP1080-QU

Power Amplifier

37.0 - 40.0 GHz

Typical Performance Curves

- **XP1080-QU-0N00: Small signal Gain (S21)**
 - $V_d = 4.0V$, $I_d = 1000mA$
 - Frequency (GHz)

- **XP1080-QU-0N00: Input Return Loss (S11)**
 - $V_d = 4.0V$, $I_d = 1000mA$
 - Frequency (GHz)

- **XP1080-QU-0N00: Output Return Loss (S22)**
 - $V_d = 4.0V$, $I_d = 1000mA$
 - Frequency (GHz)

- **XP1080-QU-0N00: Reverse Isolation (S12)**
 - $V_d = 4.0V$, $I_d = 1000mA$
 - Frequency (GHz)

- **XP1080-QU-0N00: Output IP3 vs Freq**
 - $V_d = 4V$, $I_d = 1000mA$
 - Frequency (GHz)

- **XP1080-QU-0N00: C/I3 vs Freq**
 - $P_{sc1} = 14dBm$, $V_d = 4V$, $I_d = 1000mA$
 - Frequency (GHz)

- **XP1080-QU-0N00: Reverse Isolation (S12)**
 - $V_d = 4.0V$, $I_d = 1000mA$
 - Frequency (GHz)

- **XP1080-QU-0N00: Input Return Loss (S11)**
 - $V_d = 4.0V$, $I_d = 1000mA$
 - Frequency (GHz)
XP1080-QU
Power Amplifier
37.0 - 40.0 GHz

Typical Performance Curves (cont.)

XP1080-QU: P1dB vs Freq
Vd=4V, Id=1000mA

XP1080-QU: Psat vs Freq
Vd=4V, Id=1000mA

XP1080-QU: Detector Output (Diff) vs Freq
Vd=4V, Id=1000mA, Vdet/ref Bias = +5V/100k
Power Amplifier
37.0 - 40.0 GHz

XP1080-QU

MTTF

XP1080-QK-0N00: MTTF hours vs Package Base Temperature
Vd=4V, Id=1000mA

XP1080-QK-0N00: Thc(max) vs Package Base Temperature
Vd=4V, Id=1000mA

XP1080-QK-0N00: Operating Power De-rating Curve (continuous)

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Visit www.macom.com for additional data sheets and product information.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
App Note [1] Biasing - It is recommended to bias the amplifier with Vd=4.0 V and Id=1000 mA. It is also recommended to use active biasing to keep the currents constant as the RF power and temperature vary; this gives the most reproducible results. Depending on the supply voltage available and the power dissipation constraints, the bias circuit may be a single transistor or a low power operational amplifier, with a low value resistor in series with the drain supply used to sense the current. The gate of the pHEMT is controlled to maintain correct drain current and thus drain voltage. The typical gate voltage needed to do this is -0.3V. Typically the gate is protected with Silicon diodes to limit the applied voltage. Also, make sure to sequence the applied voltage to ensure negative gate bias is available before applying the positive drain supply.

App Note [2] Bias Arrangement - Each DC pin (Vd1,2,3 and Vg1,2,3) needs to have DC bypass capacitance (10 nF/1 µF) as close to the package as possible.

App Note [3] Power Detector - As shown in the schematic below, the power detector is implemented by providing +5 V bias and measuring the difference in output voltage with standard op-amp in a differential mode configuration.

Typical Application

TX IF IN DRIVER PA + DET

XU1019-QH XB1014-QT XP1080-QU

LO

LO

IF IN

TX Filter
(if required)

DIPLEXER

LO

DIPLEXER

TX Filter
(if required)
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.
Power Amplifier
37.0 - 40.0 GHz

Rev. V2

XP1080-QU

M/A-COM Technology Solutions Inc. All rights reserved. Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.