XM1002-BD

Image Reject Mixer
34 - 46 GHz

Features
- Fundamental Image Reject Mixer
- 7.0 dB Conversion Loss
- 20.0 dB Image Rejection
- +24 dBm Input Third Order Intercept
- 100% On-Wafer RF Testing
- 100% Visual Inspection to MIL-STD-883 Method 2010
- RoHS* Compliant and 260°C Reflow Compatible

Description
M/A-COM Tech’s 34.0-46.0 GHz GaAs MMIC fundamental image reject mixer can be used as an up- or down-converter. The device has a conversion loss of 7.0 dB with a 20.0 dB image rejection across the band. I and Q mixer outputs are provided and an external 90 degree hybrid is required to select the desired sideband. This MMIC uses M/A-COM Tech’s GaAs PHEMT device model technology, and is based upon electron beam lithography to ensure high repeatability and uniformity. The chip has surface passivation to protect and provide a rugged part with backside via holes and gold metallization to allow either a conductive epoxy or eutectic solder die attach process. This device is well suited for Millimeter-wave Point-to-Point Radio, LMDS, SATCOM and VSAT applications.

Chip Device Layout

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>XM1002-BD-000V</td>
<td>“V” - vacuum release gel paks</td>
</tr>
<tr>
<td>XM1002-BD-EV1</td>
<td>evaluation module</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate Bias Voltage (Vg)</td>
<td>+0.3 VDC</td>
</tr>
<tr>
<td>Input Power (RF Pin)</td>
<td>+20.0 dBm</td>
</tr>
<tr>
<td>Input Power (IF Pin)</td>
<td>+20.0 dBm</td>
</tr>
<tr>
<td>Storage Temperature (Tstg)</td>
<td>-65 °C to +165 °C</td>
</tr>
<tr>
<td>Operating Temperature (Ta)</td>
<td>-55 °C to +125 °C</td>
</tr>
</tbody>
</table>
Electrical Specifications: 34-46 GHz (Upper Side Band) (Ambient Temperature T = 25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range (RF) Lower Side Band</td>
<td>GHz</td>
<td>34.0</td>
<td>-</td>
<td>46.0</td>
</tr>
<tr>
<td>Frequency Range (LO)</td>
<td>GHz</td>
<td>30.0</td>
<td>-</td>
<td>50.0</td>
</tr>
<tr>
<td>Frequency Range (IF)</td>
<td>GHz</td>
<td>DC</td>
<td>-</td>
<td>4.0</td>
</tr>
<tr>
<td>RF Return Loss (S11)</td>
<td>dB</td>
<td>-</td>
<td>18.0</td>
<td>-</td>
</tr>
<tr>
<td>IF Return Loss (S22)</td>
<td>dB</td>
<td>-</td>
<td>10.0</td>
<td>-</td>
</tr>
<tr>
<td>LO Return Loss (S33)</td>
<td>dB</td>
<td>-</td>
<td>8.0</td>
<td>-</td>
</tr>
<tr>
<td>Conversion Loss (S21)</td>
<td>dB</td>
<td>-</td>
<td>7.0</td>
<td>8.0</td>
</tr>
<tr>
<td>LO Input Drive (P_{LO})</td>
<td>dBm</td>
<td>-</td>
<td>+12.0</td>
<td>-</td>
</tr>
<tr>
<td>Image Rejection</td>
<td>dBC</td>
<td>15.0</td>
<td>20.0</td>
<td>-</td>
</tr>
<tr>
<td>Isolation LO/RF</td>
<td>dB</td>
<td>-</td>
<td>11.0</td>
<td>-</td>
</tr>
<tr>
<td>Isolation LO/IF</td>
<td>dB</td>
<td>-</td>
<td>30.0</td>
<td>-</td>
</tr>
<tr>
<td>Isolation RF/IF</td>
<td>dB</td>
<td>-</td>
<td>30.0</td>
<td>-</td>
</tr>
<tr>
<td>Input Third Order Intercept (IIP3)</td>
<td>dBm</td>
<td>-</td>
<td>+24.0</td>
<td>-</td>
</tr>
<tr>
<td>Gate Bias Voltage (V_{g1})</td>
<td>VDC</td>
<td>-2.0</td>
<td>-0.5</td>
<td>+0.1</td>
</tr>
</tbody>
</table>

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 2 devices.
XM1002-BD

Image Reject Mixer
34 - 46 GHz

Typical Performance Curves

XM1002-BD, USB Conversion Gain (6566 devices)

XM1002-BD, USB Image Rejection (6566 devices)

XM1002-BD, LSB Conversion Gain (6566 devices)

XM1002-BD, LSB Image Rejection (6566 devices)

RF Return Loss (dB)

LO Return Loss (dB)
Typical Performance Curves (cont.)

IF Return Loss

LO to RF Isolation (dB)
Typical Performance Curves (cont.)

XM1002-BD

- **Image Reject Mixer**
- **34 - 46 GHz**

Rev. V1

XM1002-BD: USB Down Conversion gain (dB) vs. RF USB (GHz)

- **LO = 12 and 15dBm, IF = 2GHz, RF = -25dBm, Vg = -0.5V**

IF=2 GHz

XM1002-BD: LSB Down Conversion gain (dB) vs. RF LSB (GHz)

- **LO = 12 to 15dBm, IF = 2GHz, RF = -25dBm, Vg = -0.5V**

IF=2 GHz

XM1002-BD: USB Down Conversion gain (dB) vs. RF USB (GHz)

- **LO = 12 and 15dBm, IF = 200MHz, RF = -25dBm, Vg = -0.5V**

IF=200 MHz

XM1002-BD: LSB Down Conversion gain (dB) vs. RF LSB (GHz)

- **LO = 12 to 15dBm, IF = 200MHz, RF = -25dBm, Vg = -0.5V**

IF=200 MHz

XM1002-BD: USB Down Conversion gain (dB) vs. RF USB (GHz)

- **LO = 12 and 15dBm, IF = 20MHz, RF = -25dBm, Vg = -0.5V**

IF=20 MHz

XM1002-BD: LSB Down Conversion gain (dB) vs. RF LSB (GHz)

- **LO = 12 to 15dBm, IF = 20MHz, RF = -25dBm, Vg = -0.5V**

IF=20 MHz

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support
Typical Performance Curves (cont.)

XM1002-BD, 4 samples: USB Down Conversion gain (dB) vs. RF USB (GHz)
LO = 12 and 15 dBm, IF = 26 GHz, RF = -25 dBm, Vg = -0.3 V

XM1002-BD, 4 samples: LSB Down Conversion gain (dB) vs. RF LSB (GHz)
LO = 12 to 15 dBm, IF = 26 GHz, RF = -25 dBm, Vg = -0.3 V

XM1002-BD, 3 samples: IIP3 (dBm) in USB down-conversion vs. RF freq
LO = 15 dBm, IF = 2 GHz, IFout = -14 dBm per tone, 100 MHz separation, Vg = -0.9 V

LO to IF Isolation (dB)

RF to IF Isolation (dB)
XM1002-BD

Image Reject Mixer
34 - 46 GHz

Rev. V1

Mechanical Drawing

(Note: Engineering designator is 40IRM0421)

Units: millimeters (inches) Bond pad dimensions are shown to center of bond pad.
Thickness: 0.110 +/- 0.010 (0.0043 +/- 0.0004), Backside is ground. Bond Pad/Backside Metallization: Gold
All Bond Pads are 0.100 x 0.100 (0.004 x 0.004). Bond pad centers are approximately 0.109 (0.004) from the edge of the chip.
Dicing tolerance: +/- 0.005 (+/- 0.0002). Approximate weight: 1.215 mg.

Bond Pad #1 (RF) Bond Pad #3 (Vg) Bond Pad #5 (IF2)
Bond Pad #2 (IF1) Bond Pad #4 (LO)

Bias Arrangement

Bypass Capacitors - See App Note [2]
App Note [1] Biasing - As shown in the bonding diagram, the pHEMT mixer devices are operated using a separate gate voltage Vg1. Set Vg1=-0.5V for optimum conversion loss performance.

App Note [2] Bias Arrangement - Each DC pad (Vg1) needs to have DC bypass capacitance (~100-200 pF) as close to the device as possible. Additional DC bypass capacitance (~0.01 uF) is also recommended.

App Note [3] USB/LSB Selection -

For Upper Side Band Operation (USB): With IF1 and IF2 connected to the direct port (0°) and coupled port (90°) respectively as shown in the diagram, the USB signal will reside on the isolated port. The input port must be loaded with 50 ohms.

For Lower Side Band Operation (LSB): With IF1 and IF2 connected to the direct port (0°) and coupled port (90°) respectively as shown in the diagram, the LSB signal will reside on the input port. The isolated port must be loaded with 50 ohms.

Note: The coupled port can be used as an alternative input but the port location of the Coupled and Direct ports reverse.

An alternate method of Selection of USB or LSB:

For USB:

For LSB: