WSTA3940

GaN on SiC Power Amplifier Module for 5 G

Description

The WS1A3940 is an Asymmetric Doherty Power Amplifier Module (PAM) integrating the GaN on SiC HEMT transistors with RF matching and biasing networks on a multilayer laminate substrate with advanced heat sinking technology. The WS1A3940 has been designed to operate from 3700 MHz to 3980 MHz , from supply voltages up to 50 V , at average output power levels of 8 to 10 W with crestfactor reduced and digitally pre-distorted LTE and 5 G NR signals with instantaneous bandwidths of 200 MHz or more. The device is housed in a $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ land grid array (LGA) package.

Features

- GaN on SiC technology
- Frequency: $3700-3980 \mathrm{MHz}$
- Average Output Power: 39.5 dBm
- $P_{\text {SAT }}=48 \mathrm{dBm}$
- RF inputs matched to 50Ω and DC matched
- Gate bias supply for main and peak sides available from either side of device

WS1A3940
Package PG-LGA-6x6-3-1

- Integrated harmonic terminations
- Pb-free and RoHS compliant

Typical Broadband Performance

Single-carrier LTE Performance (tested in the applications circuit for $3700-4100 \mathrm{MHz}$)
$\mathrm{V}_{\mathrm{DD}}=48 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}(\text { main })}=45 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}(\text { peak })}=-5.1 \mathrm{~V}$, channel bandwidth $=20 \mathrm{MHz}$, input PAR $=10 \mathrm{~dB} @ 0.01 \%$ CCDF

	Pout (dBM)	Gain (dB)	Efficiency $(\%)$	ACPR - (dBc)	ACPR + (dBc)	PAR (dB)
3700 MHz	39.5	14.5	53.0	-26	-26	8.3
3850 MHz	39.5	13.7	52.0	-30	-30	8.5
3980 MHz	39.5	12.9	51.0	-32	-32	8.5
4100 MHz	39.5	11.7	48.5	-29	-29	8.0

Maximum Ratings at $\mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Value	Unit
Drain-source Voltage	$\mathrm{V}_{\text {DSS }}$	125	V
Gate-source Voltage	V_{GS}	-10 to +2	V
Operating Voltage	V_{DD}	55	V
RF Input Power (main)	Pulse CW, 10\% duty cycle,	P_{IN}	35.2
(peak)	20 rspulse width	P_{IN}	38
Case Temperature	T_{C}	135	dBm
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range (V_{DD}) specified above.

DC Characteristics

Characteristics	Conditions	Symbol	Min	Typ	Max	Unit
Drain-Source Breakdown Voltage (main)	$\mathrm{V}_{G S}=-8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.36 \mathrm{~mA}$	$\mathrm{~V}_{(\mathrm{BR}) \mathrm{DSS}}$	150	-	-	V
	(peak)	$\mathrm{V}_{\mathrm{GS}}=-8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.6 \mathrm{~mA}$	$\mathrm{~V}_{(\mathrm{BR}) \mathrm{DSS}}$	150	-	-
Gate Leakage Current	$\mathrm{V}_{\mathrm{GS}}=-8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=50 \mathrm{~V}$	$\mathrm{I}_{\mathrm{GSS}}$	-	-	-1.5	mA
Gate Threshold Voltage (main)	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.36 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{GS}(\mathrm{th})}$	-3.8	-3.0	-2.3	V
(peak)	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.6 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{GS}(\mathrm{th})}$	-3.6	-2.7	-2	V

Recommended Operating Conditions

Parameter	Conditions	Symbol	Min	Typ	Max	Unit
Operating Voltage		$V_{D D}$	0	-	50	V
Gate Quiescent Voltage (main)	$\mathrm{V}_{\mathrm{DS}}=48 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mathrm{~mA}$	$\mathrm{~V}_{G S}(\mathrm{Q})$	-3.6	-3.1	-2.6	V
	(peak)	$\mathrm{V}_{\mathrm{DS}}=48 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=40 \mathrm{~mA}$	$\mathrm{~V}_{G S}(\mathrm{Q})$	-3.6	-3.1	-2.6

Moisture Sensitivity Level

Level	Test Standard	Package Temperature	Unit
3	IPC/JEDEC J-STD-020	260	${ }^{\circ} \mathrm{C}$

ESD Characteristics

Parameter	Class	Standard
Human Body Model (HBM)	Class 1B	ANSI/ESDA/JEDEC JS-001
Charge Device Model (CDM)	Class C3	ANSI/ESDA/JEDEC JS-002

RF Characteristics (tested in the production test fixture)
$V_{D D}=48 \mathrm{~V}$, Pulse CW 10% duty cycle, $20 \mu \mathrm{~s}$ pulse width

Parameter	Symbol	Conditions	Main		Peak		Unit
			Min	Max	Min	Max	
3700 MHz							
Gain	G	Pout $=38 \mathrm{dBm}$ (main) $\mathrm{P}_{\text {OUT }}=37.5 \mathrm{dBm}$ (peak)	13	16.3	12.5	16.5	dB
Saturated Power	$\mathrm{P}_{\text {SAT }}$	$\mathrm{I}_{\mathrm{DQ}}=30 \mathrm{~mA}$ (main) $\mathrm{I}_{\mathrm{DQ}}=40 \mathrm{~mA}$ (peak)	42.8	-	43	-	dBm
Efficiency	Eff	$\begin{aligned} & \mathrm{I}_{\mathrm{DQ}}=30 \mathrm{~mA}(\text { main }), \mathrm{P}_{\mathrm{SAT}} \\ & \mathrm{I}_{\mathrm{DQ}}=40 \mathrm{~mA} \text { (peak), } \mathrm{P}_{\mathrm{SAT}} \end{aligned}$	45	-	34	-	\%
3980 MHz							
Gain	G	$\begin{aligned} & \text { POUT }=38 \mathrm{dBm} \text { (main) } \\ & \text { POUT }=37.5 \mathrm{dBm} \text { (peak) } \end{aligned}$	12	16	10	14	dB
Saturated Power	PSAT	$\begin{aligned} & \mathrm{I}_{\mathrm{DQ}}=30 \mathrm{~mA} \text { (main) } \\ & \mathrm{I}_{\mathrm{DQ}}=40 \mathrm{~mA} \text { (peak) } \end{aligned}$	41	-	41	-	dBm
Efficiency	Eff	$\begin{aligned} & \mathrm{I}_{\mathrm{DQ}}=30 \mathrm{~mA} \text { (main), } \mathrm{P}_{\mathrm{SAT}} \\ & \mathrm{I}_{\mathrm{DQ}}=40 \mathrm{~mA} \text { (peak), } \mathrm{P}_{\mathrm{SAT}} \end{aligned}$	46	-	31	-	\%

Ordering Information

Order Code	Description
WS1A3940-V2-R00A	Sample Quantities
WS1A3940-V2-R1	330 mm (13") Reel 100 pcs
WS1A3940-V2-R3K	$330 \mathrm{~mm}(13 ")$ Reel 3,000 pcs
FXA/ WSGPA01V1-18	$3.7-3.98 \mathrm{GHz}$ Driver Evaluation Board
FXA/WS1A3940V2-04	$3.7-3.98 \mathrm{GHz}$ Evaluation Board

Evaluation Boards - Typical RF Performance

Part Number	Frequency	Pout (dBm)	$\begin{gathered} \text { Eff } \\ (\%) \end{gathered}$	Gain (dB)	PAR (dB)	$\begin{gathered} \text { ACPR+ } \\ (\mathrm{dBc}) \end{gathered}$	ACPR(dBc)
Output Stage : WS1A3940							
Single-carrier WCDMA Performance, $\mathrm{V}_{\mathrm{DD}}=48 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}(\mathrm{main})}=45 \mathrm{~mA}$, channel bandwidth $=3.84 \mathrm{MHz}$, input PAR $=10 \mathrm{~dB} @ 0.01 \%$ CCDF							
FXA/WS1A3940V2-04	$3.7-3.98 \mathrm{GHz}$	39.5	44.5	29.8	8	-27.5	-27.5

WSGPA01 Driver

Single-carrier WCDMA Performance, $\mathrm{V}_{\mathrm{DD}}=48 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=25 \mathrm{~mA}$, channel bandwidth $=3.84 \mathrm{MHz}$, input PAR $=10 \mathrm{~dB} @ 0.01 \%$ CCDF

FXA/WSGPA01V1-18	$3.7-3.98 \mathrm{GHz}$	26.5	17.5	16.8	9.1	-46.3	-45.2

Pinout Diagram (top view)

Bias Sequencing

Bias ON

1. Ensure RF is turned off
2. Apply pinch-off voltage of -5 V to the gate
3. Apply nominal drain voltage
4. Bias gate to desired quiescent drain current
5. Apply RF

Bias OFF

1. Turn RF off
2. Apply pinch-off voltage to the gate
3. Turn-off drain voltage
4. Turn-off gate voltage

Tape and Reel Information

5
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
For further information and support please visit:

Package Outline Specifications - Package PG-LGA-6x6-3-1

DIM	INCHES			MILLIMETERS		
	MIN	TYP	MAX	MIN	TYP	MAX
	.234	.236	.238	5.95	6.00	6.05
B	.234	.236	.238	5.95	6.00	6.05
C	.037	.041	.045	0.93	1.03	1.13
D	.157	.161	.165	4.00	4.10	4.20
E	-	.128	-	-	3.24	-
F	-	.128	-	-	3.24	-
G	-	.161	-	-	4.10	-
H	-	.041	-	-	1.03	-
J	.054	.054	.055	1.37	1.38	1.39
K	-	.032	-	-	0.81	-
L	-	.018	-	-	0.46	-
M	-	.020	-	-	0.50	-
N	.054	.054	.055	1.37	1.38	1.39
P	.013	.014	.014	0.34	0.35	0.36

Diagram Notes-unless otherwise specified:

1. Interpret dimensions and tolerances per ASME Y14.5M-1994.

6

Notes \& Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

