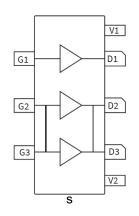
Thermally Enhanced GaN Amplifier 48 V, 610 W 1805 - 1880 MHz

WGC18630 Rev. V1

Features

- Optimized for Cellular Base Station Applications
- GaN on SiC HEMT Technology
- 48 V Operation
- Pulsed CW Performance: 1842 MHz, 48 V, 40 µs Pulse Width, 10% Duty Cycle, Combined Outputs
- Output Power @ P4dB = 610 W
- Efficiency @ P4dB = 73%
- 100 % RF Tested
- RoHS* Compliant


Description

The WGC18630 is a 610 W (P4dB) GaN on SiC HEMT amplifier designed for 5G base station application and optimized for 1805 - 1880 MHz modulated signal operation. It features high efficiency, and a thermally enhanced package with earless flange.

Typical RF Characteristics

WCDMA 3GPP TM1 64 DPCH 10 dB PAR @ 0.01% CCDF, V_{DS} = 48 V, I_{DQCAR} = 720 mA, V_{GSPK} = -5 V, T_{C} = 25°C, P_{OUT} = 49.3 dBm

Frequency (MHz)	G _p (dB)	ηD	Output PAR (dB)	ACPR (dBc)
1805	16.7	58.7	8.8	-31.6
1842	16.7	58.4	8.7	-31.9
1880	16.5	57.9	8.6	-31.8

Pin Configuration¹

Pin #	Function		
G1	Gate Main		
G2	Gate Peak 1		
G3	Gate Peak 2		
D1	Drain Main		
D2	Drain Peak 1		
D3	Drain Peak 2		
V1, V2	Drain Video Decoupling, No DC Bias		
S	Source (flange)		

1. Exposed metallization on the back side of the package.

Ordering Information

Part Number	Package
WGC18630V1A-RA	50 piece reel
WGC18630V1A-R2	250 piece reel
LTAWGC18630-E1	Doherty Sample Board

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

1

RF Electrical Specifications:

T_c = 25°C, V_{DS} = 48 V, I_{DQCAR} = 720 mA, V_{GSPK} = -5 V Note: Performance in MACOM Doherty Evaluation Test Fixture, 50 Ω system.

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Power Gain	WCDMA ² , 1842 MHz, P _{OUT} = 49.3 dBm	dB	_	16.7	_
Drain Efficiency	WCDMA ² , 1842 MHz, Pout = 49.3dBm	%	_	58	_
Output CCDF @ 0.01%	WCDMA ² , 1842 MHz, Pout = 49.3dBm	dB	_	8.7	_
Adjacent Channel Power	WCDMA ² , 1842 MHz, Pout = 49.3dBm	dBc	_	-32	—
Input Return Loss	WCDMA ² , 1842 MHz, Pout = 49.3dBm	dB	_	-14	—
Ruggedness: Output Mismatch	All phase angles	VSWR = 10:1, No Device Damage		Damage	

RF Electrical Specifications:

$T_A = 25^{\circ}$ C, $V_{DS} = 48$ V, $I_{DQCAR} = 360$ mA, $V_{GSPK} = V_{GS}$ @ $I_{DQPK} = 720$ mA - 1.6 V Note: Performance in MACOM Doherty Production Test Fixture, 50 Ω system.

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Power Gain	WCDMA ² , 1880 MHz, P _{OUT} = 49.3 dBm	dB	14.0	16.5	—
Drain Efficiency	WCDMA ² , 1880 MHz, P _{OUT} = 49.3 dBm	%	44.0	52.5	—
Output CCDF @ 0.01%	WCDMA ² , 1880 MHz, P _{OUT} = 49.3 dBm	dB	6.8	8.0	—
Adjacent Channel Power	WCDMA ² , 1880 MHz, P _{OUT} = 49.3 dBm	dBc	—	-32.0	-25.0
Input Return Loss	WCDMA ² , 1880 MHz, P _{OUT} = 49.3 dBm	dB	—	-12	—

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

WGC18630

Rev. V1

DC Electrical Characteristics T_c = 25°C

Parameter	Test Conditions	Units	Min.	Тур.	Max.
	Carrier Amplifier				
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 10 V	mA	—	—	5.7
Gate-Source Leakage Current - Mid Voltage	V_{GS} = -8 V, V_{DS} = 50 V	mA	-8.5	_	_
Gate-Source Leakage Current - High Voltage	V _{GS} = -8 V, V _{DS} = 150 V	mA	-11.2	—	_
Gate Threshold Voltage	V _{DS} = 10 V, I _D = 36 mA	V	-3.8	-3.1	-2.3
Peaking Amplifier					
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 10 V	mA	_		11.4
Gate-Source Leakage Current - Mid Voltage	V_{GS} = -8 V, V_{DS} = 50 V	mA	-16.9	_	
Gate-Source Leakage Current - High Voltage	V _{GS} = -8 V, V _{DS} = 150 V	mA	-22.3	_	
Gate Threshold Voltage	V _{DS} = 10 V, I _D = 72 mA	V	-3.8	-3.1	-2.3

Recommended Operating Voltages

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Drain Operating Voltage	—	V	0	_	50
Gate Quiescent Voltage	V _{DS} = 48 V, I _D = 360 mA	V	-3.8	-3.0	-2.3

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Thermally Enhanced GaN Amplifier 48 V, 610 W 1805 - 1880 MHz

Absolute Maximum Ratings^{3,4,5}

Parameter	Absolute Maximum
Drain Source Voltage, V _{DS}	125 V
Gate Source Voltage, V _{GS}	-10 V to +2 V
Operating Voltage, V _{DS}	55 V
Gate Current (Carrier), I _G	36 mA
Gate Current (Peaking), I _G	72 mA
Drain Current (Carrier), I _D	12.2 A
Drain Current (Peaking), I _D	24.4 A
Junction Temperature	+225°C
Storage Temperature	-65°C to +150°C

3. Exceeding any one or combination of these limits may cause permanent damage to this device.

4. MACOM does not recommend sustained operation near these survivability limits.

5. Product's qualification were performed @ +225°C. Operation @ T_J (+275°C) reduces median time to failure.

Thermal Characteristics

Parameter	Test Conditions	Typical
Thermal Resistance (R _{⊌JC}) Carrier Peaking	V _{DS} = 48 V, T _C = +85°C, 123 W DC 157 W DC	1.1°C/W 0.6°C/W

Bias Sequencing

Bias ON

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

Bias OFF

- 1. Turn RF off
- 2. Apply pinch-off voltage to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

Handling Procedures

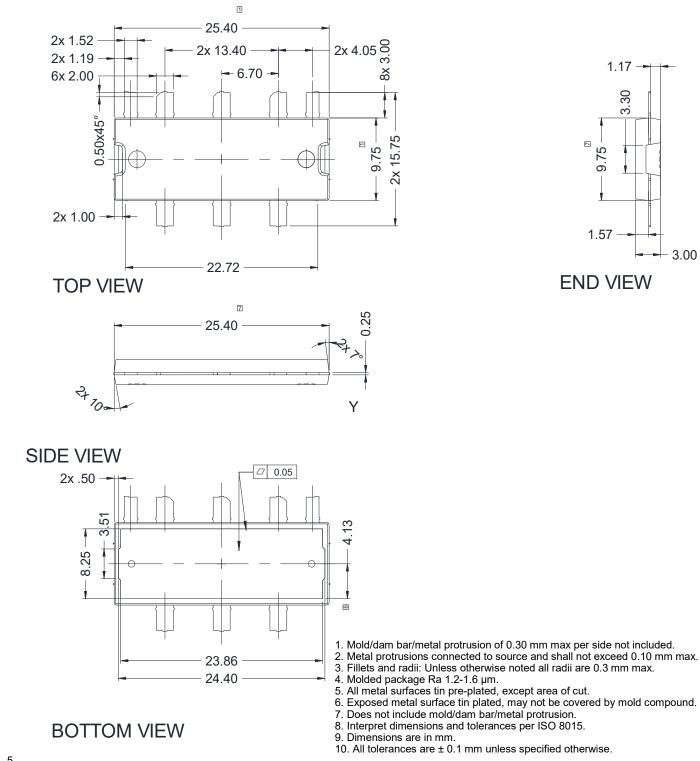
Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B and CDM Class C3 devices.

⁴


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.


Thermally Enhanced GaN Amplifier 48 V, 610 W 1805 - 1880 MHz

WGC18630 Rev. V1

3.00

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

5

For further information and support please visit: https://www.macom.com/support

WGC18630 Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

⁶

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.