

PXAE263708NB

Thermally-Enhanced High Power RF LDMOS FET 400 W (P_{3dB}), 28 V, 2620 - 2690 MHz

Description

The PXAE263708NB is a 400-watt (P3dB) LDMOS FET intended for use in multi-standard cellular power amplifier applications in the 2620 to 2690 MHz frequency band. Features include input and output matching, high gain and a thermally-enhanced package with earless flange. Manufactured with an advanced LDMOS process, this device provides excellent thermal performance and superior reliability.

PXAE263708NB Package PG-HB2SOF-8-1

Features

- Broadband internal input and output matching
- Asymmetric Doherty design
 - Main: P_{1dB} = 140 W Typ
 - Peak: P_{1dB} = 260 W Typ
- Typical pulsed CW performance, 2655 MHz, 28 V, Doherty configuration, 10 µs, 10% duty cycle, class AB
 - Output power at P_{1dB} = 200 W
 - Output power at P3dB = 400 W
 - Efficiency = 49% (P_{OUT} = 57 W avg)
 - Gain = 15 dB (P_{OUT} = 57 W avg)
- Capable of handling 10:1 VSWR @ 32 V, 100 W (CW) output power
- Integrated ESD protection
- Human Body Model Class 2 (per ANSI/ESDA/JEDEC
- Low thermal resistance
- Pb-free and RoHS compliant

RF Characteristics

Single-carrier WCDMA Specifications (tested in the Doherty production test fixture)

 V_{DD} = 28 V, I_{DO} = 850 mA, P_{OUT} = 57 W avg, V_{GSPK} = 1.5 V, f = 2690 MHz, 3GPP signal, channel bandwidth = 3.84 MHz, peak/average = 10 dB@0.01%CCDF

Characteristic	Symbol	Min	Тур	Max	Unit
Gain	G _{ps}	12.5	13.5	_	dB
Drain Efficiency	η_{D}	42.5	46.5	_	%
Adjacent Channel Power Ratio	ACPR	_	-27	-23	dBc
Output PAR at 0.01% probability on CCDF	OPAR	7	7.7	_	dB

All published data at T_{CASE} = 25°C unless otherwise indicated ESD: Electrostatic discharge sensitive device—observe handling precautions!

DC Characteristics

Characteristic		Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdowr	n Voltage	$V_{GS} = 0 \text{ V}, I_{DS} = 10 \text{ mA}$	$V_{(BR)DSS}$	65	_	_	V
Drain Leakage Current		$V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}	_	_	1	μΑ
		$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}	_	_	10	μΑ
Gate Leakage Current		V _{GS} = 10 V, V _{DS} = 0 V	I _{GSS}	_	_	1	μΑ
On-State Resistance	(main)	$V_{GS} = 10 \text{ V}, V_{DS} = 0.1 \text{ V}$	R _{DS(on)}	_	0.08	_	Ω
	(peak)	$V_{GS} = 10 \text{ V}, V_{DS} = 0.1 \text{ V}$	R _{DS(on)}	_	0.04	_	Ω
Operating Gate Voltage	(main)	V _{DS} = 28 V, I _{DQ} = 850 mA	V_{GS}	2.7	3.1	3.5	V
	(peak)	$V_{DS} = 28 \text{ V}, I_{DQ} = 0 \text{ mA}$	V_{GS}	_	1.5	_	V

Maximum Ratings

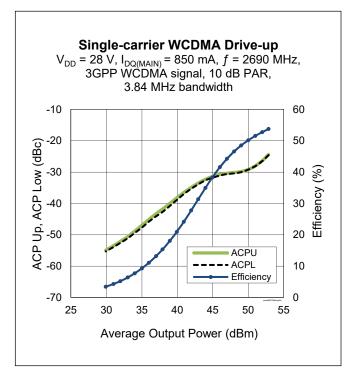
Parameter	Symbol	Value	Unit
Drain-Source Voltage	V_{DSS}	65	V
Gate-Source Voltage	V_{GS}	-6 to +10	V
Operating Voltage	V_{DD}	0 to +32	V
Junction Temperature	TJ	225	°C
Storage Temperature Range	T_{STG}	-65 to +150	°C

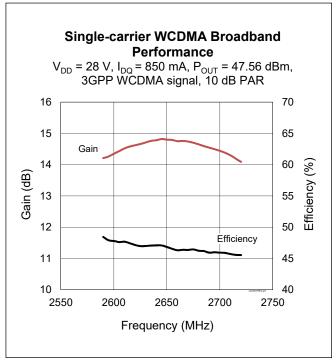
Thermal Characteristics

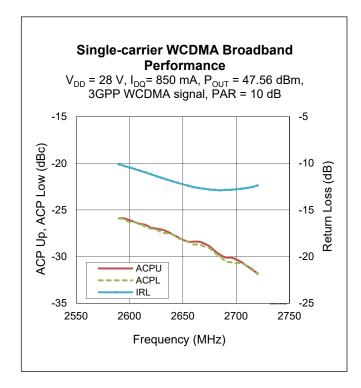
 $T_{CASE} = 70$ °C, $V_{DD} = 28$ V, $I_{DQ} = 850$ mA, 2,655 MHz

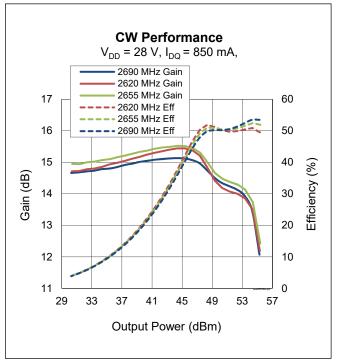
Characteristic		Symbol	Value	Unit
Thermal Resistance	main - 57 W CW	$R_{ heta JC}$	0.61	°C/W
	peak - 200 W CW	$R_{ heta JC}$	0.25	°C/W

Moisture Sensitivity Level

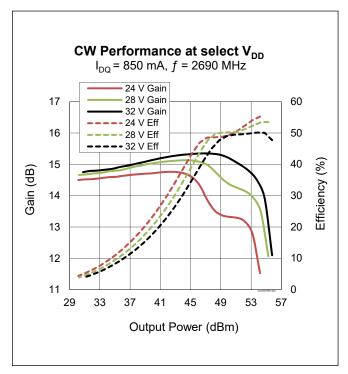

Level	Test Standard	Package Temperature	Unit
3	IPC/JEDEC J-STD-020	260	°C


Ordering Information


Type and Version	Order Code	Package and Description	Shipping
PXAE263708NB V1 R2	PXAE263708NB-V1-R2	PG-HB2SOF-8-1, overmold with	Tape & Reel,250 pcs
		earless flange	



Typical Performance (data taken in test fixture)



Typical Performance (cont.)

See next page for Load Pull Performance

Load Pull Performance

Main Side Load Pull Performance – Pulsed CW signal: $10 \mu s$, 10% duty cycle, 28 V, $I_{DO} = 850$ mA, class AB

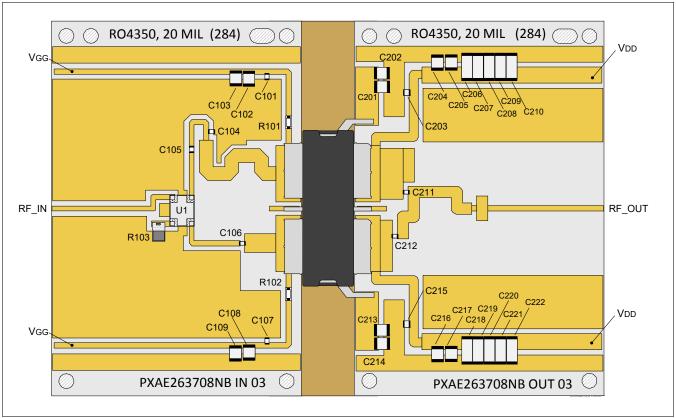
			P_{1dB}									
		Max Output Power					Max Drain Efficiency					
Freq [MHz]	$\mathbf{Z}\mathbf{s}$ $[\Omega]$	Z ι [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{1dB} [W]	η _D [%]	Z ι [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{1dB} [W]	η _D [%]	
2620	6.9 – j11	1.5 – j4.9	16.2	51.8	152	51.0	3.1 – j3.5	18.5	50.1	103	63.6	
2655	9.2 – j12	1.5 – j5.1	16.6	52.0	158	54.0	2.7 – j3.8	18.6	50.6	115	64.2	
2690	12.8 – j11	1.5 – j5.1	16.6	51.8	152	52.4	2.8 – j3.9	18.6	50.2	105	62.6	

			P _{3dB}									
		Max Output Power					Max Drain Efficiency					
Freq [MHz]	$\mathbf{Z}\mathbf{s}$ $[\Omega]$	Z ι [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{1dB} [W]	η _D [%]	Z ι [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{1dB} [W]	η _D [%]	
2620	6.9 – j11	1.6 – j5.0	14.5	52.60	182	54.9	3.0 – j3.5	16.4	51.00	126	63.7	
2655	9.2 – j12.1	1.4 – j5.2	14.3	52.80	191	54.0	2.5 – j3.9	16.5	51.50	141	64.8	
2690	12.8 – j11.3	1.5 – j5.4	14.5	52.70	186	53.8	2.6 – j3.8	16.6	51.00	126	63.4	

Peak Side Load Pull Performance – Pulsed CW signal: 10 µs, 10% duty cycle, 28 V, V_{GSPK} = 1.7 V, class C

			P _{1dB}								
	Max Output Power					Max Drain Efficiency					
Freq [MHz]	$\mathbf{Z}\mathbf{s}$ $[\Omega]$	Z ι [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{1dB} [W]	η _D [%]	Z ι [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{1dB} [W]	η _D [%]
2620	2.9 – j7.1	3.3 – j7.9	12.2	54.70	295	53.0	3.2 – j4.6	13.2	52.90	195	63.7
2655	3.5 – j7.6	3.4 – j8.3	12.6	54.80	302	54.0	2.8 – j4.9	13.8	52.60	182	64.8
2690	4.7 – j7.9	4.5 – j9.0	12.6	54.70	295	53.7	3.2 – j5.3	13.7	52.60	182	63.6

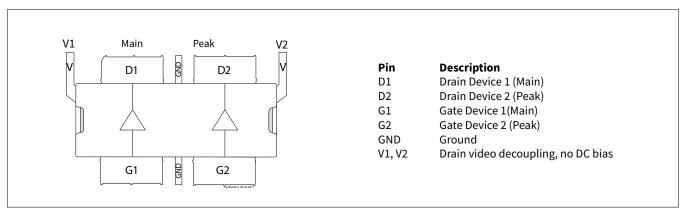
		РздВ										
		Max Output Power					Max Drain Efficiency					
Freq [MHz]	$\mathbf{Z}\mathbf{s}$ $[\Omega]$	Z ι [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{1dB} [W]	η _D [%]	Z ι [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{1dB} [W]	η _D [%]	
2620	2.9 – j7.1	3.5 – j7.9	10.3	55.40	347	54.6	3.2 – j5.0	11.3	53.80	240	62.9	
2655	3.5 – j7.6	3.7 – j8.6	10.5	55.40	347	54.3	3.2 – j5.7	11.7	54.10	257	64.0	
2690	4.7 – j7.9	4.6 – j9.2	10.5	55.40	347	54.1	3.8 – j6.2	11.6	54.20	263	62.6	


Reference Circuit, 2620 - 2690 MHz

Reference Circuit Assembly

DUT	PXAE263708NB V1
Test Fixture Part No.	LTA/PXAE263708NB-V1
PCB	Rogers 4350, 0.508 mm [0.020"] thick, 2 oz. copper, ε_r = 3.66

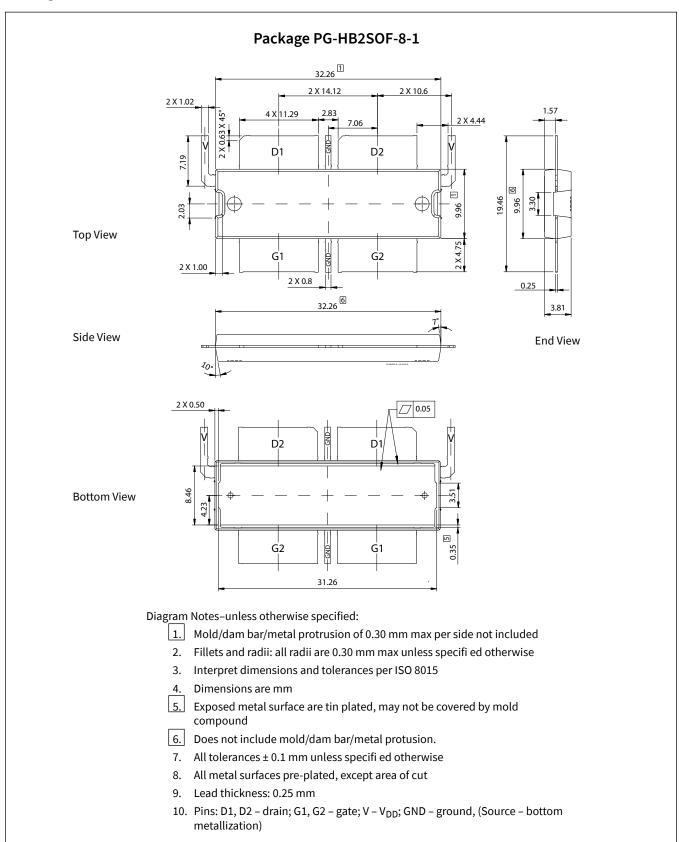
Reference Circuit (cont.)


Reference circuit assembly diagram (not to scale)

Components Information

Component	Description	Manufacturer	P/N		
Input					
C101, C105, C106, C107	Capacitor, 12 pF	ATC	ATC800A120JT250XT		
C102, C103, C108, C109	Capacitor, 10 μF, 50 V	Taiyo Yuden	UMK325C7106MM-T		
C104	Capacitor, 0.5 pF	ATC	ATC800A0R5CT250XT		
R101, R102	Resistor, 10 ohms	Panasonic Electronic Components	ERJ-8GEYJ100V		
R103	Resistor, 50 ohms	Anaren	C8A50Z4A		
U1	Hybrid coupler	Anaren	X3C25P1-05S		
Output					
C201, C202, C204, C205, C213, C214, C216, C217	Capacitor, 10 μF, 50 V	Taiyo Yuden	UMK325C7106MM-T		
C203, C215	Capacitor, 12 pF	ATC	ATC800A120JT250XT		
C206, C207, C208, C209, C210, C218, C219, C220, C221, C222	Capacitor, 10 μF, 100 V	TDK Corporation	C5750X7S2A106M230KB		
C211	Capacitor, 3.3 pF	ATC	ATC800A3R3CT250XT		
C212 Capacitor, 8.2 pF		ATC	ATC800A8R2CT250T		

Pinout Diagram (top view)



Lead connections for PXAE263708NB

See next page for Package Outline Specifications

Package Outline Specifications

Find the latest and most complete information about products and packaging at the Internet page

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.