
PTVA127002EV

Thermally-Enhanced High Power RF LDMOS FET 700 W, 50 V, 1200 – 1400 MHz

Description

The PTVA127002EV LDMOS FET is designed for use in power amplifier applications in the 1200 to 1400 MHz frequency band. Features include high gain and thermally-enhanced package with bolt-down flange. Manufactured with an advanced LDMOS process, this device provides excellent thermal performance and superior reliability.

Features

- Broadband input and output matching
- High gain and efficiency
- Integrated ESD protection
- Human Body Model Class 2 (per ANSI/ESDA/JEDEC JS-001)
- Low thermal resistance
- Excellent ruggedness
- Pb-free and RoHS compliant
- Capable of withstanding a 10:1 load mismatch (all phase angles) at 700 W peak under RF pulse, 300 μS, 10% duty cycle.

RF Characteristics

Pulsed RF Performance (tested in the test fixture)

 V_{DD} = 50 V, I_{DQ} = 150 mA per side, P_{OUT} = 700 W, f_1 = 1200 MHz, f_2 = 1300 MHz, f_3 = 1400 MHz, 300 µs pulse width, 12% duty cycle

Characteristic	Symbol	Min	Тур	Мах	Unit
Gain	G _{ps}	15.5	16	_	dB
Drain Efficiency	η_{D}	50	56	_	%
Gain Flatness	ΔG	_	1.0	1.3	dB
Return Loss	IRL	_	-20	-11	dB
					OHS
ESD: Electrostatic discharge sensitive device—observe handling precautions!				co	ompliant

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit. https://www.macom.com/support

RF Characteristics

Typical RF Performance (not subject to production test, verified by design/characterization in the test fixture) $I_{DQ} = 150$ mA per side, Input signal ($t_r = 7$ ns, $t_f = 5$ ns), 300 µs pulse width, 12% duty cycle, class AB test

 $V_{DD} = 50 V_{,}$

			P _{1dB}				P _{3dB}				
Mode of Operation	f (MHz)	IRL (dB)	Gain (dB)	Eff (%)	Р _{оит} (W)	Gain (dB)	Eff (%)	P _{OUT} (W)	Max P _{droop} (pulse) @ P _{1dB}	t _{r (ns)} @P _{1dB}	t _{f (ns)} @P _{1dB}
300 µs, 12%	1200	-20	16.6	57	710	14.6	57	810	0.2	5	<2
Duty Cycle	1300	-16	15.8	54	840	13.8	55	950	0.3	5	<2
	1400	-20	15.7	54	730	13.7	53	820	0.2	5	<2

Typical RF Performance (tested on LTN/PTVA127002EV E5 the test fixture)

 V_{DD} = 50 V, I_{DO} = 150 mA per side, Input signal (t_r = 7 ns, t_f = 5 ns), 32 ms pulse width, 50% duty cycle, class AB test

Mode of Operation	Compression	f (MHz)	P _{IN} (dBm)	Gain (dB)	IRL (dB)	I (A)	Eff (%)	Р _{ОՍТ} (dBm)	P _{OUT} (W)
32 ms, 50%	P _{1dB}	1300	42.0	16.1	22.6	22.7	56.6	58.1	641
Duty Cycle	P _{3dB}	1300	44.4	14.1	19.0	25.2	55.8	58.5	703

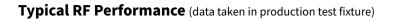
DC Characteristics (single side)

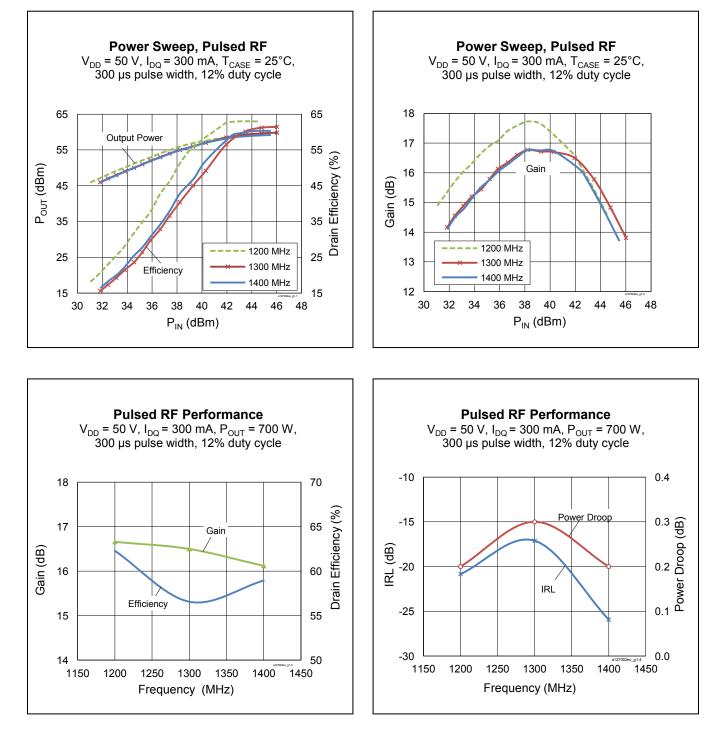
Characteristic	Conditions	Symbol	Min	Тур	Мах	Unit	
Drain-Source Breakdown Voltage	Breakdown Voltage $V_{GS} = 0 V, I_{DS} = 10 mA$		105	_	_	V	
Drain Leakage Current V _{DS} = 50 V, V _C	I _{DSS}	_	_	1.0	μA		
	V_{DS} = 105 V, V_{GS} = 0 V	I _{DSS}	_	_	10.0	μA	
On-State Resistance	V_{GS} = 10 V, V_{DS} = 0.1 V	R _{DS(on)}	_	0.1	_	Ω	
Operating Gate Voltage V _{DS} = 50 V, I _D	V _{GS}	3	3.35	4	V		
Gate Leakage Current $V_{GS} = 10 V, V_{I}$	_{DS} = 0 V	I _{GSS}	_	_	1.0	μA	

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	105	V
Gate-Source Voltage	V _{GS}	-6 to +12	V
Operating Voltage	V _{DD}	0 to +55	V
Junction Temperature	Tj	225	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C
Thermal Resistance (T _{CASE} = 70°C, 700 W CW)	$R_{ heta JC}$	~0.36	°C/W

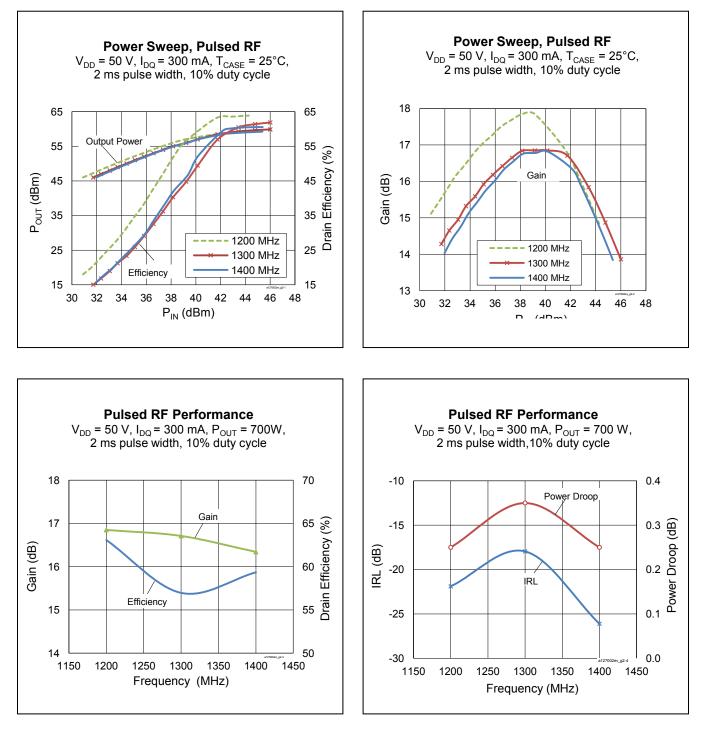
Ordering Information


Type and Version Order Code		Package Description	Shipping
PTVA127002EV V1 R0	PTVA127002EV-V1-R0	H-36275-4, bolt-down	Tape & Reel, 50 pcs
PTVA127002EV V1 R250	PTVA127002EV-V1-R250	H-36275-4, bolt-down	Tape & Reel, 250 pcs

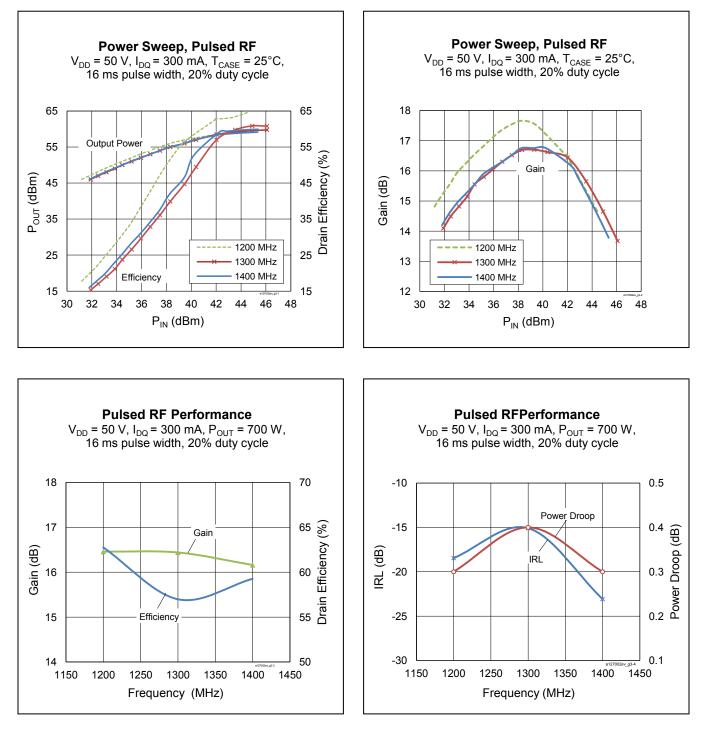

2

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. 05, 2022, 07, 10

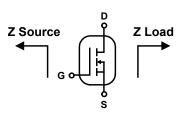


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 05, 2023-07-10


Typical RF Performance (cont.)

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 05, 2023-07-10

Typical RF Performance (cont.)



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 05, 2023-07-10

Broadband Circuit Impedance

Freq	req Z Source Ω		Z Load Ω		
[MHz]	R	јХ	R	jХ	
1200	0.84	-1.27	0.90	-0.97	
1300	0.97	-1.06	0.72	-0.47	
1400	1.35	-1.12	0.63	0.03	

Load Pull Performance (single side)

Load Pull at Max P_{OUT} Point – 16 μ s pulse width, 10% duty cycle, class AB, V_{DD} = 50 V, 150 mA

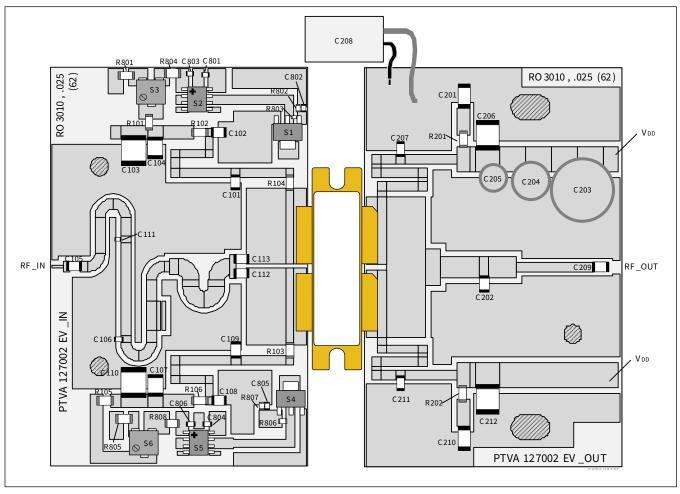
Freq [MHz]	Ζί [Ω]	P _{IN} [dBm]	Р _{ОUT} [dBm]	P _{OUT} [W]	P _G [dB]	PAE Eff [%]	Ζ_{ΟυΤ} [Ω]
1200	1.91 – j2.04	41.40	56.40	436.52	15.00	53.80	1.30 – j2.03
1300	2.72 - j3.13	42.24	56.54	450.82	14.30	54.48	1.25 – j1.94
1400	4.83 - j1.46	41.66	56.31	427.56	14.65	53.27	1.03 - j1.94

Load Pull at Max G_T Point – 16 μ s pulse width, 10% duty cycle, class AB, V_{DD} = 50 V, 150 mA

Freq [MHz]	ΖΙ [Ω]	P _{IN} [dBm]	P _{OUT} [dBm]	P _{OUT} [W]	P _G [dB]	PAE Eff [%]	Ζ_{Ουτ} [Ω]
1200	1.91 – j2.04	38.10	54.72	296.48	16.62	57.89	3.03 - j3.11
1300	2.72 - j3.13	38.84	54.83	304.09	15.99	62.54	3.22 - j1.63
1400	4.83 - j1.46	37.21	53.42	219.79	16.21	57.25	2.30 – j0.09

Load Pull at Max Efficiency Point – 16 μ s pulse width, 10% duty cycle, class AB, V_{DD} = 50 V, 150 mA

Freq [MHz]	ΖΙ [Ω]	P _{IN} [dBm]	Р _{ОUT} [dBm]	P _{OUT} [W]	P _G [dB]	PAE Eff [%]	Ζ_{ΟυΤ} [Ω]
1200	1.91 – j2.04	39.60	55.80	380.19	16.20	60.71	2.22 – j2.43
1300	2.72 – j3.13	39.44	55.23	333.43	15.79	63.71	2.81 - j1.90
1400	4.83 - j1.46	39.39	55.19	330.37	15.80	62.26	2.40 - j1.45


Z Optimum – 16 μ s pulse width, 10% duty cycle, class AB, V_{DD} = 50 V, 150 mA

Freq [MHz]	ΖΙ [Ω]	P _{IN} [dBm]	Р _{ОUT} [dBm]	P _{OUT} [W]	P _G [dB]	PAE Eff [%]	Ζ_{ΟυΤ} [Ω]
1200	1.91 – j2.04	39.18	55.58	361.41	16.40	60.50	2.41 – j2.50
1300	2.72 – j3.13	39.50	55.30	338.84	15.80	62.60	2.73 - j1.51
1400	4.83 - j1.46	40.00	55.60	363.08	15.60	60.70	1.86 - j1.37

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 05, 2023-07-10

Reference Circuit, 1200 – 1400 MHz

Reference circuit assembly diagram (not to scale)

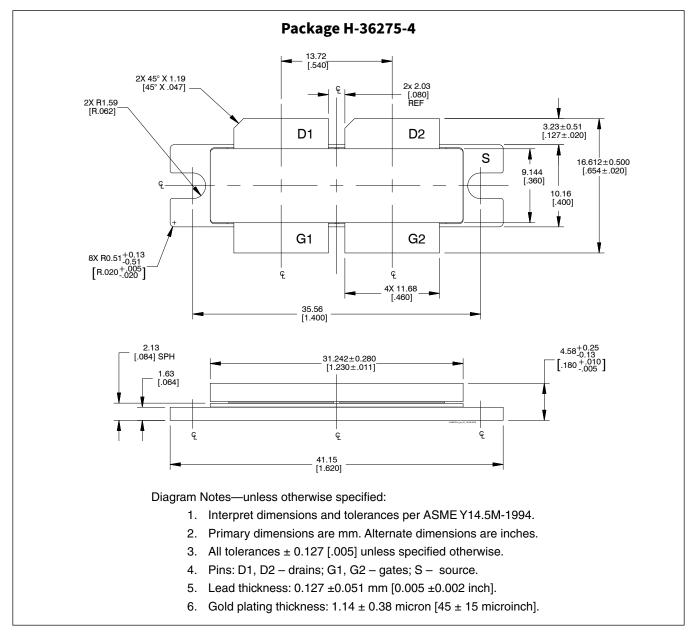
7

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u>

Reference Circuit (cont.)

Reference Circuit Assembly

DUT	PTVA27002EV V1
Test Fixture Part No.	LTN/PTVA127002EV V1
РСВ	Rogers 3010, 0.635mm [0.025"] thick, 2 oz. copper, ε _r = 10.2, f = 1930 – 1990 MHz


Components Information

Component	Description	Suggested Manufacturer	P/N
Input			
C101, C102, C108, C109	Capacitor, 39 pF	ATC	ATC100B390KW500XB
C103, C110	Capacitor, 10 µF	TDK Corporation	C5750X5R1H106K230KA
C104, C107	Capacitor, 1 μF	TDK Corporation	C4532X7R2A105M230KA
C105, C112, C113	Capacitor, 56 pF	ATC	ATC100B560JW500XB
C106	Capacitor, 3.9 pF	ATC	ATC800A3R9CW250
C111	Capacitor, 6.2 pF	ATC	ATC100A6R2CW150XB
C801, C802, C803, C804, C805, C806	Capacitor, 1000 pF	Panasonic Electronic Components	ECJ-1VB1H102K
R101, R105	Resistor, 1000 Ω	Panasonic Electronic Components	ERJ-8GEYJ102V
R102, R106	Resistor, 5.6 Ω	Panasonic Electronic Components	ERJ-8GEYJ5R6V
R103, R104, R804, R808	Resistor, 10 Ω	Panasonic Electronic Components	ERJ-8GEYJ100V
R801, R805	Resistor, 2000 Ω	Panasonic Electronic Components	ERJ-8GEYJ202V
R802, R807	Resistor, 1300 Ω	Panasonic Electronic Components	ERJ-3GEYJ132V
R803, R806	Resistor, 1200 Ω	Panasonic Electronic Components	ERJ-3GEYJ122V
S1, S4	Transistor	Infineon Technologies	BCP56
S2, S5	Voltage Regulator	National Semiconductor	LM7805
S3, S6	Potentiometer, $2k \Omega$	Bourns Inc.	3224W-1-202E
Output			
C201, C210	Capacitor, 1 μF	TDK Corporation	C4532X7R2A105M230KA
C202	Capacitor, 2.2 μF	ATC	ATC100B2R2CW500
C203	Capacitor, 100 µF	Cornell Dubilier Electronics (CDE)	SK101M100ST
C204	Capacitor, 22 μF	Cornell Dubilier Electronics (CDE)	SEK220M100ST
C205	Capacitor, 10 µF	Cornell Dubilier Electronics (CDE)	SEK100M100ST
C206, C212	Capacitor, 10 μF	TDK Corporation	C5750X5R1H106K230KA
C207, C211	Capacitor, 39 pF	ATC	ATC100B390KW500
C208	Capacitor, 6800 μF	Panasonic Electronic Components	ECO-S2AP682EA
C209	Capacitor, 56 pF	ATC	ATC100B560JW500
R201, R202	Resistor, 5.6 Ω	Panasonic Electronic Components	ERJ-8RQJ5R6V

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Package Outline Specifications

Notes & Disclaimer

10

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support