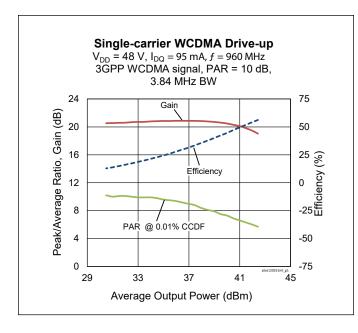


PTVA120252MT


Thermally-Enhanced High Power RF LDMOS FET 25 W, 48 V, 500 - 1400 MHz

Description

The PTVA120252MT LDMOS FET is a 25-watt LDMOS FET designed for use in power amplifier applications in the 500 MHz to 1400 MHz frequency band. Features include high gain and a thermally-enhanced, surface-mount package. Manufactured with an advanced LDMOS process, this device provides excellent thermal performance and superior reliability.

Package Types: PG-SON-16

Features

- Unmatched
- Target CW performance 960 MHz, 48 V, combined outputs
 - Output power at P_{1dB} = 25 W
 - Gain = 19.8 dB
 - Efficiency = 64%
- Capable of handling 10:1 VSWR @ 48 V, 20 W CW output power
- Integrated ESD protection
- Human Body Model class 1C (per ANSI/ESDA/ JEDEC JS-001)
- Low thermal resistance
- Pb-free and RoHS compliant

RF Characteristics

Single-carrier WCDMA Specifications (tested in a the production test fixture)

 $V_{DD} = 48 \text{ V}, I_{DQ} = 87 \text{ mA}, P_{OUT} = 5.5 \text{ W average}, f = 960 \text{ MHz}, 3 \text{GPP WCDMA signal}, 3.84 \text{ MHz bandwidth}, 10 \text{ dB PAR } @0.01\% \text{ CCDF between the control of the control of$

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Linear Gain	G _{ps}	18.5	19.5	_	dB
Drain Efficiency	$\eta_{\scriptscriptstyle D}$	28	31.5	_	%
Adjacent Channel Power Ratio	ACPR	_	-33.5	-31	dBc

All published data at $T_{CASE} = 25^{\circ}C$ unless otherwise indicated ESD: Electrostatic discharge sensitive device—observe handling precautions!

DC Characteristics (each side)

Characteristic	Symbol	Min.	Typ.	Max.	Unit	Conditions
Drain-Source Breakdown Voltage	V _{BR(DSS)}	105	_	_	V	V _{GS} = 0 V, I _{DS} = 10 mA
Drain Lookaga Current		_	_	1		$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$
Drain Leakage Current	DSS	_	_	10	μΑ	V _{DS} = 105 V, V _{GS} = 0 V
Gate Leakage Current	I _{GSS}	_	_	1		V _{GS} = 10 V, V _{DS} = 0 V
On-State Resistance	R _{DS(on)}	_	2.8	_	Ω	V _{GS} = 10 V, V _{DS} = 0.1 V
Operating Gate Voltage	V _{GS}	3	3.65	4	V	V _{DS} = 48 V, I _{DQ} = 85 mA

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source Voltage	V _{DSS}	105	
Gate-source Voltage	V _{GS}	-6 to +12	V
Operating Voltage	V _{DD}	0 to +55	
Junction Temperature	T _J	225	°C
Storage Temperature Range	T _{STG}	-65 to +150	

Thermal Characteristics

Parameter	Symbol	Value	Unit	Conditions
Thermal Resistance	$R_{\theta JC}$	2.6	°C/W	T _{CASE} = 70°C, 25 W CW

Ordering Information

Type and Version	Order Code	Package Description	Shipping	
PTVA120252MT V1 R1K	PTVA120252MTV1-R1K	PG-SON-16, plastic package	Tape & Reel, 1000 pcs	

MACOM

Typical RF Performance (data taken in production test fixture)

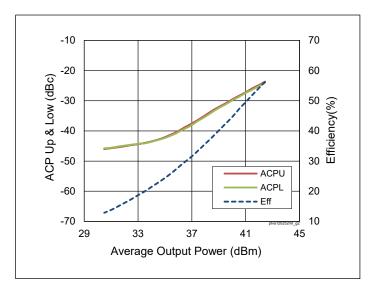


Figure 1. Single-carrier WCDMA Drive-up

 $V_{\rm DD}$ = 48 V, $I_{\rm DQ}$ = 95 mA, f = 960 MHz, 3GPP WCDMA signal, PAR = 10 dB, BW = 3.84 MHz

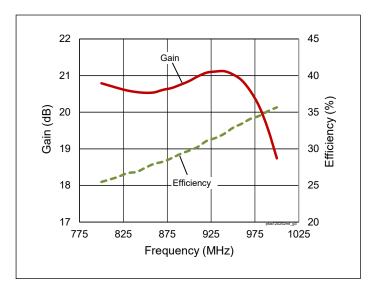


Figure 2. Single-carrier WCDMA Broadband Performance

 V_{DD} = 48 V, I_{DQ} = 95 mA, P_{OUT} = 37.4 dBm, 3GPP WCDMA signal, PAR = 10 dB

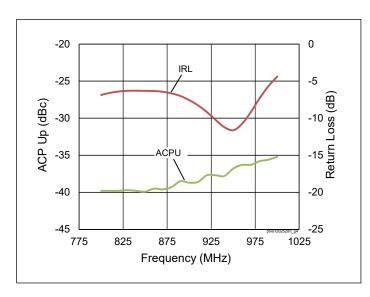


Figure 3. Single-carrier WCDMA Broadband Performance

 V_{DD} = 48 V, I_{DQ} = 95 mA, P_{OUT} = 37.4 dBm, 3GPP WCDMA signal, PAR = 10 dB

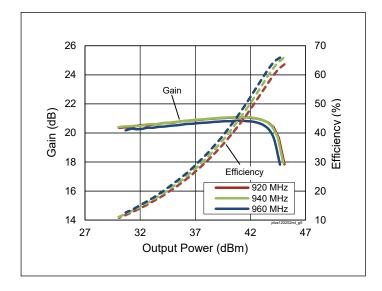
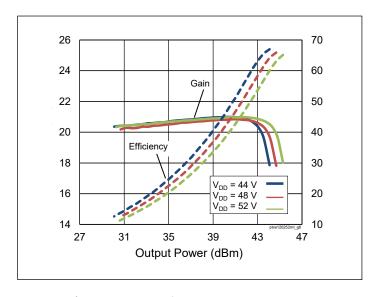



Figure 4. CW Performance

 $V_{DD} = 48 \text{ V}, I_{DQ} = 95 \text{mA}$

Typical Performance (cont.)

Figure 5. CW Performance at various V_{DD} $I_{DO} = 95 \text{ mA}, f = 960 \text{ MHz}$

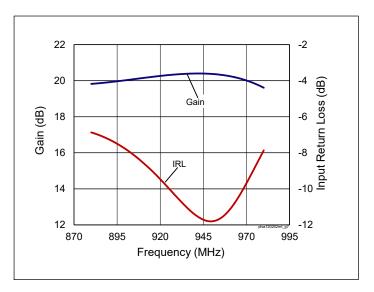
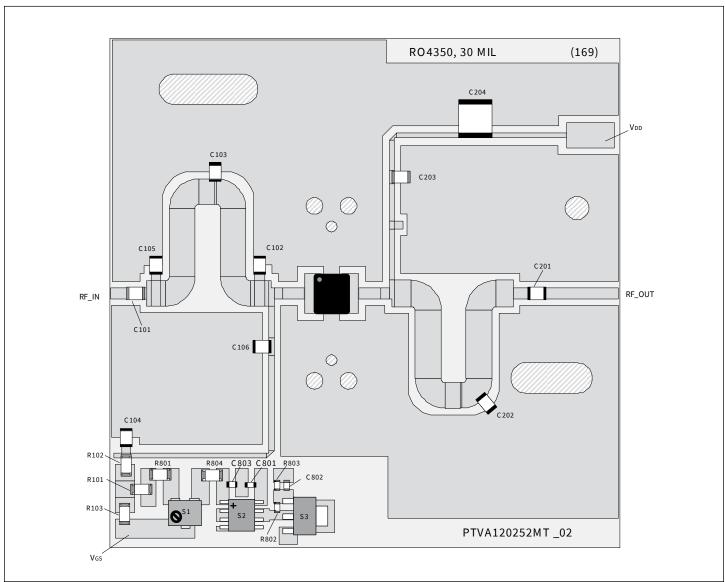


Figure 6. Small Signal CW Gain & Input Return Loss $V_{DD} = 48 \text{ V}, I_{DQ} = 95 \text{ mA}$


Load Pull Performance

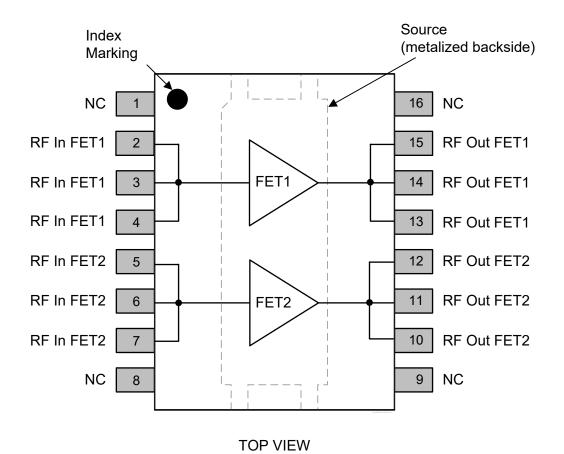
Load Pull Performance – Pulsed CW signal: 10 μ s, 10% duty cycle, 48 V, I $_{DO}$ = 40 mA

		P _{1dB}									
			Max Output Power				Max PAE				
Freq [MHz]	Zs [Ω]	Zl [Ω]	Gain [dB]	Р _{оит} [dBm]	P _{OUT} [W]	PAE [%]	Zl [Ω]	Gain [dB]	Р _{оит} [dBm]	P _{OUT} [W]	PAE [%]
791	3.12+j7.44	18.94+j8.73	20.85	45.06	32.06	60.1	10.67+j26.27	23.27	41.79	15.10	70.8
821	3.2+j7	18.77+j9.38	20.54	45.03	31.84	59.7	10+j25.7	22.94	41.76	15.00	69.8
869	3.08+j6.56	20.14+j8.78	19.75	44.95	31.26	58.0	14.39+j21	21.46	43.59	22.86	68.0
894	3.02+j6.56	19.72+j9.41	19.41	44.79	30.13	57.5	9.22+j25.02	21.61	41.69	14.76	68.2
925	2.9+j6.12	20.67+j9.26	18.85	45.06	32.06	57.6	14.61+j21.69	20.44	43.55	22.65	66.0
960	2.86+j5.68	18.72+j9.45	18.2	44.80	30.20	55.6	9.75+j23.93	20.24	42.07	16.11	65.5

Evaluation Board, 925 - 960 MHz

Reference circuit assembly diagram (not to scale)

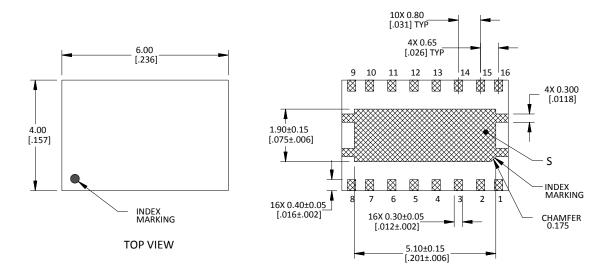
Evaluation Board Part Number	LTNPTVA120252MT-V1
PCB Information	Rogers 4350, 0.762 mm [0.030"] thick, 2 oz. copper, $\varepsilon_r = 3.66$, $f = 925 - 960$ MHz



Components Information

Component	Description	Manufacturer	P/N
Input			
C101, C104, C106	Capacitor, 75 pF	ATC	ATC100B750JW500XB
C102	Capacitor, 14 pF	ATC	ATC100B140KW500XB
C103	Capacitor, 2.2 pF	ATC	ATC100B2R2DW500XB
C105	Capacitor, 2.5 pF	ATC	ATC100B2R5CW500XB
R101, R103	Resistor, 200 ohms	Panasonic Electronic Components	ERJ-8GEYJ201V
R102	Resistor, 10 ohms	Panasonic Electronic Components	ERJ-8GEYJ100V
Output			
C201, C203	Capacitor, 75 pF	ATC	ATC100B750JW500XB
C202	Capacitor, 2.0 pF	ATC	ATC100B2R0CW500XB
C204	Capacitor, 10 μF	TDK Corporation	C5750X5R1H106K230KA
C801,C802, C803	Capacitor, 1000 pF	Panasonic Electronic Components	ECJ-1VB1H102K
R801	Resistor, 10 ohms	Panasonic Electronic Components	ERJ-8GEYJ100V
R802	Resistor, 1.2K ohms	Panasonic Electronic Components	ERJ-3GEYJ122V
R803	Resistor, 1.3K ohms	Panasonic Electronic Components	ERJ-3GEYJ132V
R804	Resistor, 100 ohms	Panasonic Electronic Components	ERJ-8GEYJ101V
S1	Potentiometer 2K ohms	Bourns Inc.	3224W-1-202E
S2	Voltage Regulator	Texas Instruments	LM78L05ACM
S3	Transistor	Infineon Technologies	BCP56

Pinout Diagram (top view)



Description Pin Gate 2 - 7Drain 10 - 15

Source bottom metalization not connected 1, 8, 9, 16

Package Outline Specifications - Package PG-SON-16

BOTTOM VIEW

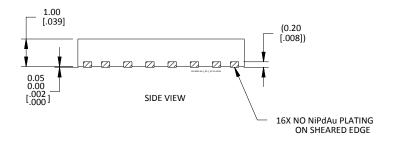


Diagram Notes—unless otherwise specified:

- 1. Interpret dimensions and tolerances per ASME Y14.5M-1994.
- 2. Primary dimensions are mm. Alternate dimensions are inches.
- 3. All tolerances ± 0.1 [.004].
- 4. Package dimensions 4.00 mm X 6.00 mm X 1.00 mm.
- 5. Pins: 2-7, gate; 10-15, drain; S, source (bottom metalization); 1, 8, 9, 16, not connected.
- 6. Gold plating thickness: 0.025 0.127 micron [1 5 microinch].

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.