PTVA104501EH

Thermally-Enhanced High Power RF LDMOS FET $450 \mathrm{~W}, 50 \mathrm{~V}, \mathbf{9 6 0} \mathbf{- 1 2 1 5} \mathbf{~ M H z}$

Description

The PTVA104501EH LDMOS FET is designed for use in power amplifier applications in the 960 to 1215 MHz frequency band. Features include high gain and thermally-enhanced package with bolt-down flange. Manufactured with an advanced LDMOS process, this device provides excellent thermal performance and superior reliability.

PTVA104501EH
Package H-33288-2

Features

- Broadband internal input and output matching
- High gain and efficiency
- Integrated ESD protection
- Human Body Model Class 2 (per ANSI/ESDA/JEDEC JS-001)
- Low thermal resistance
- Excellent ruggedness
- Pb-free and RoHS compliant
- Capable of withstanding a 10:1 load mismatch (all phase angles) at 450 W peak under RF pulse, $128 \mu \mathrm{~S}, 10 \%$ duty cycle.

RF Characteristics

Pulsed RF Performance (tested in the test fixture)
$\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=200 \mathrm{~mA}, \mathrm{P}_{\text {OUT }}=450 \mathrm{~W}$ (peak), $\mathrm{f}_{1}=960 \mathrm{MHz}, \mathrm{f}_{2}=1090 \mathrm{MHz}, \mathrm{f}_{3}=1215 \mathrm{MHz}, \mathrm{RF}$ pulse $128 \mu \mathrm{~s}$, 10% duty cycle

Characteristic	Symbol	Min	Typ	Max	Unit
Gain	G_{ps}	16.5	17.5	-	dB
Drain Efficiency	η_{D}	53	58	-	$\%$
Gain Flatness	$\Delta \mathrm{G}$	-	0.85	1.8	dB
Return Loss	IRL	-	-9.5	-6	dB

All published data at $\mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$ unless otherwise indicated
ESD: Electrostatic discharge sensitive device-observe handling precautions!

RF Characteristics

Typical RF Performance (not subject to production test, verified by design/characterization in the test fixture)
$V_{D D}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=200 \mathrm{~mA}$, Input signal ($\mathrm{t}_{\mathrm{r}}=7.0 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=7.0 \mathrm{~ns}$), $128 \mu \mathrm{~s}$ pulse width, 10% duty cycle, class $A B$ test

Mode of Operation	$\underset{(\mathrm{MHz})}{\mathbf{f}}$	$\begin{aligned} & \text { IRL } \\ & \text { (dB) } \end{aligned}$	$\mathrm{P}_{1 \mathrm{~dB}}$			$\mathrm{P}_{3 \mathrm{~dB}}$			$\begin{array}{lr} \text { Max } & \mathbf{P}_{\text {droop }} \\ \text { (pulse) } @ \mathbf{P}_{\mathbf{1 d B}} \end{array}$	$\begin{aligned} & \mathbf{t}_{\mathbf{r}(\mathrm{ns})} \\ & @ \mathrm{P}_{1 \mathrm{~dB}} \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{f}(\mathbf{n s})} \\ @ \mathbf{P}_{\mathbf{1 d B}} \end{gathered}$
			Gain (dB)	Eff (\%)	Pout (W)	Gain (dB)	Eff (\%)	Pout (W)			
128 ss, 10\%	960	-7.5	18.0	56	460	16.0	53	490	0.15	5	<2
	1030	-13.0	18.5	59	470	16.5	60	540	0.15	5	<2
	1090	-8.0	17.8	61	510	15.8	61	590	0.20	5	<2
	1150	-15.0	18.1	59	540	16.1	60	620	0.20	5	<2
	1215	-9.0	18.3	56	460	16.3	53	510	0.20	5	<2

DC Characteristics

Characteristic	Conditions	Symbol	Min	Typ	Max	Unit
Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$	$\mathrm{~V}_{(\mathrm{BR}) \mathrm{DSS}}$	105	-	-	V
Drain Leakage Current $\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	1	$\mu \mathrm{~A}$	
	$\mathrm{~V}_{\mathrm{DS}}=111 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	10	$\mu \mathrm{~A}$
On-State Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.1 \mathrm{~V}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$	-	0.1	-	Ω
Operating Gate Voltage $\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=200 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{GS}}$	3.0	3.5	4.0	V	
Gate Leakage Current $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{GSS}}$	-	-	1	$\mu \mathrm{~A}$	

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	105	V
Gate-Source Voltage	V_{GS}	-6 to +12	V
Operating Voltage	V_{DD}	0 to +55	V
Junction Temperature	T_{J}	225	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance	$\mathrm{R}_{\theta J \mathrm{C}}$	0.25	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\left(\mathrm{T}_{\text {CASE }}=70^{\circ} \mathrm{C}, 430 \mathrm{~W} \mathrm{CW}, \mathrm{f}=1090 \mathrm{MHZ}, \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=200 \mathrm{~mA}\right)$			

Ordering Information

Type and Version	Order Code	Package Description	Shipping
PTVA104501EH V1 R0	PTVA104501EH-V1-R0	H-33288-2	Tape \& Reel, 50 pcs
PTVA104501EH V1 R250	PTVA104501EH-V1-R250	H-33288-2	Tape \& Reel, 250 pcs

Typical RF Performance (data taken in production test fixture)

Typical RF Performance (cont.)

Typical RF Performance (cont.)

Broadband Circuit Impedance

Freq [MHz]	\mathbf{Z} Source Ω		\mathbf{Z} Load Ω	
	\mathbf{R}	$\mathbf{j x}$	\mathbf{R}	$\mathbf{j X}$
960	2.04	-0.30	0.79	-0.02
1030	1.71	-0.18	0.73	0.64
1090	1.45	0.09	0.95	1.09
1150	1.23	0.41	1.26	0.98
1215	1.07	0.77	0.71	0.93

Load Pull Performance

Load Pull at Max Pout Point - $16 \mu \mathrm{~s}$ pulse width, 10% duty cycle, class AB, $\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, 200 \mathrm{~mA}$

Freq [MHz]	ZI [$]$	$\begin{gathered} \mathrm{P}_{\mathrm{IN}} \\ {[\mathrm{dBm}]} \end{gathered}$	Pout [dBm]	Pout [W]	PG [dB]	PAE Eff [\%]	$Z_{\text {OUT }}$ [Ω]
960	1.35 - j0.70	43.30	57.83	606.74	14.53	54.90	1.29-j1.37
1030	0.99 - j0.78	42.14	57.62	578.10	15.48	50.96	1.02 - j1.43
1090	1.24 - j0.84	41.37	57.40	549.54	16.03	50.52	1.06 - j1.51
1215	1.56 - j0.99	39.24	56.92	492.04	17.68	48.12	1.13 - j1.66

Load Pull at Max $\mathbf{G}_{\mathbf{T}}$ Point - $16 \mu \mathrm{~s}$ pulse width, 10% duty cycle, class AB, $\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, 200 \mathrm{~mA}$

$\begin{gathered} \text { Freq } \\ {[\mathrm{MHz}]} \end{gathered}$	Zl [l]	$\begin{gathered} \mathrm{P}_{\mathrm{IN}} \\ {[\mathrm{dBm}]} \end{gathered}$	Pout [dBm]	Pout [W]	PG [dB]	PAE Eff [\%]	$Z_{\text {OUT }}$ $[\Omega]$
960	$1.35-\mathrm{j} 0.70$	40.10	55.70	371.54	15.60	58.76	2.15 - j2.60
1030	0.99 - j0.78	38.16	55.33	341.19	17.17	59.44	2.73 - j2.02
1090	1.24 - j0.84	36.05	54.14	259.42	18.09	56.31	3.55 - j0.42
1215	1.56 - j0.99	33.38	53.42	219.79	20.04	49.44	1.34 - j0.08

Load Pull at Max Efficiency Point - 16μ s pulse width, 10% duty cycle, class AB, $\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, 200 \mathrm{~mA}$

Freq [MHz]	Zl []	$\begin{gathered} \mathrm{P}_{\text {IN }} \\ {[\mathrm{dBm}]} \end{gathered}$	Pout [dBm]	Pout [W]	PG [dB]	PAE Eff [\%]	$Z_{\text {OUT }}$ [Ω]
960	$1.35-\mathrm{j} 0.70$	42.00	57.27	533.33	15.27	62.15	1.60 - j1.79
1030	0.99 - j0.78	39.44	56.34	430.53	16.90	61.78	2.27 - j1.50
1090	1.24 - j0.84	37.54	55.36	343.56	17.82	59.60	2.72 - j1.29
1215	1.56 - j0.99	36.19	55.58	361.41	19.39	56.63	1.65 - j0.92

Z Optimum - 16μ s pulse width, 10% duty cycle, class $A B, V_{D D}=50 \mathrm{~V}, 200 \mathrm{~mA}$

Freq [MHz]	Zl [l]	$\begin{gathered} \mathrm{P}_{\mathrm{IN}} \\ {[\mathrm{dBm}]} \end{gathered}$	Pout [dBm]	Pout [W]	PG [dB]	PAE Eff [\%]	$Z_{\text {OUT }}$ [Ω]
960	1.35 - j0.70	42.62	57.62	578.10	15.00	60.03	1.50 - j1.61
1030	0.99 - j0.78	39.82	56.62	459.20	16.80	61.39	2.03-j1.45
1090	1.24 - j0.84	38.71	56.21	417.83	17.50	58.60	2.02-j1.38
1215	1.56 - j0.99	37.79	56.47	443.61	18.68	53.43	1.29-j1.37

Reference Circuit

Reference circuit assembly diagram (not to scale)

Reference Circuit (cont.)

Reference Circuit Assembly

DUT	PTVA104501EH
Test Fixture Part No.	LTN/PTVA104501EH V1
PCB	Rogers $3010,0.635 \mathrm{~mm}\left[0.025^{\prime \prime}\right]$ thick, 2 oz. copper, $\varepsilon_{\mathrm{r}}=10.2$

Components Information

Component	Description	Suggested Manufacturer	P/N
Input			
C101, C103	Capacitor, 39 pF	ATC	100B 390
C102	Capacitor, 3.3 pF	ATC	800A 3R3
C104	Capacitor, 56 pF	ATC	100B 560
C105	Capacitor, 3.9 pF	ATC	800A 3R9
C106	Capacitor, 2.4 pF	ATC	800A 2R4
C107, C110, C111	Capacitor, 1000 pF	Panasonic Electronic Components	ECJ-1VB1H102K
C108	Capacitor, $10 \mu \mathrm{~F}$	TDK Corporation	C5750X5R1H106K230KA
C109	Capacitor, $1 \mu \mathrm{~F}$	TDK Corporation	C4532X7R2A105M230KA
R101	Resistor, 20Ω	Panasonic Electronic Components	ERJ-8GEYJ200V
R102	Resistor, 1k Ω	Panasonic Electronic Components	ERJ-8GEYJ102V
R103	Resistor, 2k Ω	Panasonic Electronic Components	ERJ-8GEYJ202V
R104	Resistor, $1.2 \mathrm{k} \Omega$	Panasonic Electronic Components	ERJ-3GEYJ122V
R105	Resistor, 1.3k Ω	Panasonic Electronic Components	ERJ-3GEYJ132V
R106	Resistor, 10 ohms	Panasonic Electronic Components	ERJ-8GEYJ100V
S1	Transistor	Infineon Technologies	BCP56
S2	Voltage Regulator	Texas Instruments	LM78L05ACM
S3	Potentiometer, 2k Ω	Bourns Inc.	3224W-1-202E
Output			
C201	Capacitor, $100 \mu \mathrm{~F}$	Cornell Dubilier Electronics (CDE)	SK101M100ST
C202	Capacitor, $10 \mu \mathrm{~F}$	Cornell Dubilier Electronics (CDE)	SEK100M100ST
C203, C210	Capacitor, 39 pF	ATC	100B 390
C204, C207	Capacitor, $10 \mu \mathrm{~F}$	TDK Corporation	C5750X5R1H106K230KA
C205, C208	Capacitor, $1 \mu \mathrm{~F}$	TDK Corporation	C4532X7R2A105M230KA
C206	Capacitor, $22 \mu \mathrm{~F}$	Cornell Dubilier Electronics (CDE)	SEK220M100ST
C209	Capacitor, 56 pF	ATC	100B 560
C211	Capacitor, $6800 \mu \mathrm{~F}$	Panasonic Electronic Components	ECO-S2AP682EA
R201, R202	Resistor, 5.6Ω	Panasonic Electronic Components	ERJ-8RQJ5R6V

Package Outline Specifications

Diagram Notes—unless otherwise specified:

1. Interpret dimensions and tolerances per ASME Y14.5M-1994.
2. Primary dimensions are mm . Alternate dimensions are inches.
3. All tolerances ± 0.127 [.005] unless specified otherwise.
4. Pins: D - drain; G - gate; S - source.
5. Lead thickness: $0.10+0.051 /-0.025 \mathrm{~mm}[.004+0.002 /-0.001 \mathrm{inch}]$.
6. Gold plating thickness: 0.25 micron [10 microinch] max.

Notes \& Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

