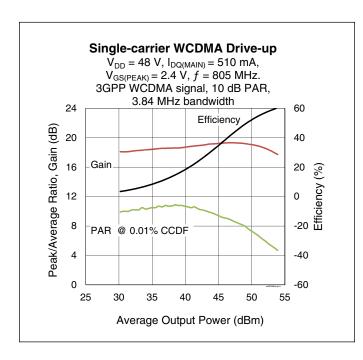


PTRA087008NB


Thermally-Enhanced High Power RF LDMOS FET 650 W, 48 V, 755 - 805 MHz

Description

The PTRA087008NB is a 650-watt LDMOS FET. It is designed for use in multistandard cellular power amplifier applications from 755 MHz to 805 MHz. Manufactured with an advanced LDMOS process, this device provides excellent thermal performance and superior reliability.

Package Types: PG-HB2SOF-6-1

Features

- Broadband internal input and output matching
- Asymmetric design
 - Main: P_{1dB} = 245 W Typ Peak: P_{1dB} = 380 W Typ
- Typical pulsed CW performance, 805 MHz, 48 V, Doherty configuration
 - Output power at P_{3dB} = 650 W
 - Efficiency = 52%
 - Gain = 19.5 dB
- Capable of handling 10:1 VSWR @48 V, 30 W (WCDMA) output power
- Human Body Model Class 2 (per ANSI/ESDA/JEDEC
- Integrated ESD protection
- Low thermal resistance
- RoHS-compliant

RF Characteristics

Single-carrier WCDMA Specifications (tested in the Doherty test fixture)

 V_{DD} = 48 V, I_{DQ} = 510 mA, P_{OUT} = 107 W avg, $V_{GS(PEAK)}$ = 2.4 V, f = 805 MHz, 3GPP, channel bandwidth = 3.84 MHz, peak/average = 10 dB @ 0.01% CCDF

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Gain	G _{ps}	17.5	18.5	_	dB
Drain Efficiency	η_{D}	48.5	52	_	%
Adjacent Channel Power Ratio	ACPR	_	-31	-28	dBc
Output PAR @ 0.01% CCDF	OPAR	6.7	-7.2	_	dB

All published data at T_{CASE} = 25°C unless otherwise indicated ESD: Electrostatic discharge sensitive device—observe handling precautions!

DC Characteristics (each side)

Characteristic	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Drain-Source Breakdown Voltage	V _{BR(DSS)}	105	_	_	V	$V_{GS} = 0 \text{ V}, I_{DS} = 10 \text{ mA}$	
Drain Leakage Current		_	_	1		$V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$	
Drain Leakage Current	DSS	_	_	10	μΑ	V _{DS} = 105 V, V _{GS} = 0 V	
Gate Leakage Current	I _{GSS}	_	_	1		V _{GS} = 10 V, V _{DS} = 0 V	
On-State Resistance (main)		_	0.07	_		V -10VV -01V	
On-State Resistance (peak)	R _{DS(on)}	_	0.05	_	Ω	$V_{GS} = 10 \text{ V}, V_{DS} = 0.1 \text{ V}$	
Operating Gate Voltage (main)	V	3	3.5	4	V	V _{DS} = 48 V, I _{DQ} = 0.2 A	
Operating Gate Voltage (peak)	V_{GS}	_	2.4	_		V _{DS} = 48 V, I _{DQ} = 0 A	

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source Voltage	V _{DSS}	105	
Gate-source Voltage	V _{GS}	-6 to +12	V
Operating Voltage	V _{DD}	0 to +55	
Junction Temperature	T _J	225	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C

^{1.} Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range (V_{DD}) specified above.

2. Parameters values can be affected by end application and product usage. Values may change over time.

Thermal Characteristics $V_{DD} = 48 \text{ V}, I_{DO} = 500 \text{ mA}, 780 \text{ MHz}$

Characteristics	Symbol	Value	Unit	Conditions
Thermal Resistance (Main)	$R_{\theta JC}$	0.70	°C/W	T _{CASE} = 70°C, P _{OUT} = 107 W CW

Moisture Sensitivity Level

Level	Test Signal	Package Temperature	Unit		
3	IPC/JEDEC J-STD-020	260	°C		

Ordering Information

Type and Version	Type and Version Order Code		Shipping		
PTRA087008NB V1 R2	PTRA087008NB-V1-R2	PG-HB2SOF-6-1, overmold	Tape & Reel, 250 pcs		

MACOM®

Typical Performance (data taken in a production test fixture)

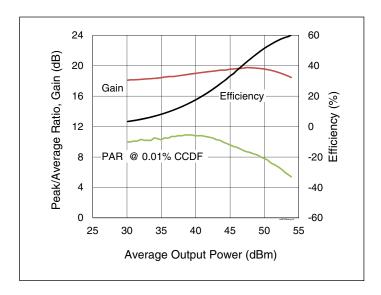


Figure 1. Single-carrier WCDMA Drive-up

 $m V_{DD} = 48 \ V, \ I_{DQ(MAIN)} = 510 \ mA, \ V_{GS(PEAK)} = 2.4 \ V, \ f = 780 \ MHz. \ 3GPP \ WCDMA \ signal, \ 10 \ dB \ PAR, \ 3.84 \ MHz \ bandwidth$

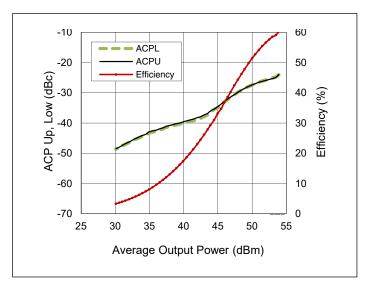


Figure 3. Single-carrier WCDMA Drive-up

 $V_{\rm DD}$ = 48 V, $I_{\rm DQ(MAIN)}$ = 510 mA, $V_{\rm GS(PEAK)}$ = 2.4 V, f = 780 MHz, 3GPP WCDMA signal, 10 dB PAR, 3.84 MHz bandwidth

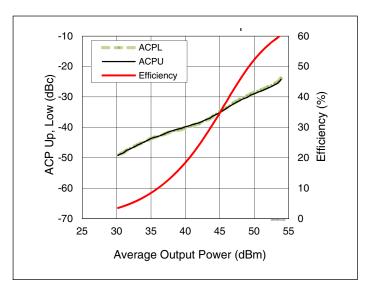
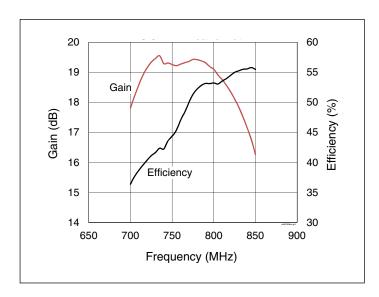



Figure 2. Single-carrier WCDMA Drive-up

 V_{DD} = 50 V, $I_{DQ(MAIN)}$ = 510 mA, $V_{GS(PEAK)}$ = 2.4 V, f = 805 MHz, 3GPP WCDMA signal, 10 dB PAR, 3.84 MHz bandwidth

Figure 4. Single-carrier WCDMA Broadband

$$\begin{split} V_{\text{DD}} &= 48 \text{ V, I}_{\text{DQ(MAIN)}} = 510 \text{ mA,} \\ V_{\text{GS(PEAK)}} &= 2.4 \text{ V, P}_{\text{OUT}} = 50.3 \text{ dBm,} \\ 3\text{GPP WCDMA signal, 10 dB PAR,} \\ &= 3.84 \text{ MHz bandwidth} \end{split}$$

MACOM

Typical Performance (cont.)

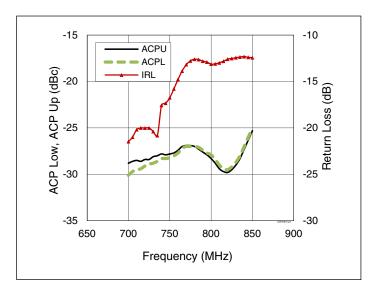
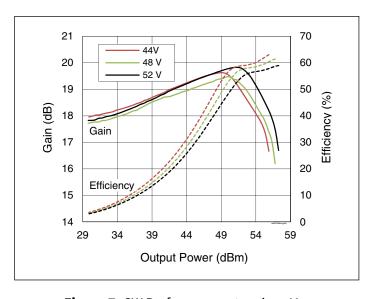



Figure 5. Single-carrier WCDMA Broadband

$$\begin{split} &V_{DD}=48~V,~I_{DQ(MAIN)}=510~mA,\\ &V_{GS(PEAK)}=2.4~V,~P_{OUT}=50.3~dBm,\\ &3GPP~WCDMA~signal,~10~dB~PAR,\\ &3.84~MHz~bandwidth \end{split}$$

Figure 7. CW Performance at various V_{DD}

$$I_{DQ(MAIN)} = 510 \text{ mA}, V_{GS(PEAK)} = 2.4 \text{ V},$$

$$f = 805 \text{ MHz}$$

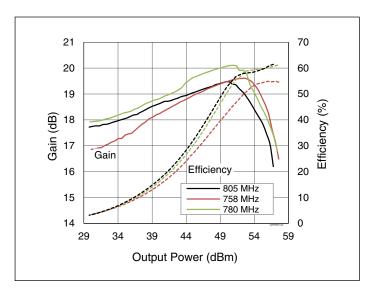
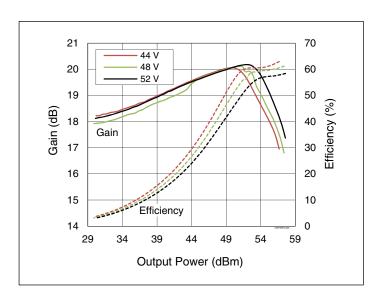



Figure 6. CW Performance

$$V_{\text{DD}} = 48 \text{ V}, \ I_{\text{DQ(MAIN)}} = 510 \text{ mA}, \\ V_{\text{GS(PEAK)}} = 2.4 \text{ V}$$

Figure 8. CW Performance at various V_{DD}

$$I_{DQ(MAIN)} = 510 \text{ mA}, V_{GS(PEAK)} = 2.4 \text{ V},$$

$$f = 780 \text{ MHz}$$

Typical Performance (cont.)

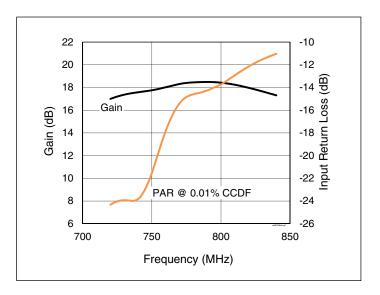


Figure 9. CW Performance Small Signal

$$V_{DD} = 48 \text{ V}, \ I_{DQ(MAIN)} = 510 \text{ mA},$$

$$V_{GS(PEAK)} = 2.4 \text{ V}$$

See Load Pull Performance, next page

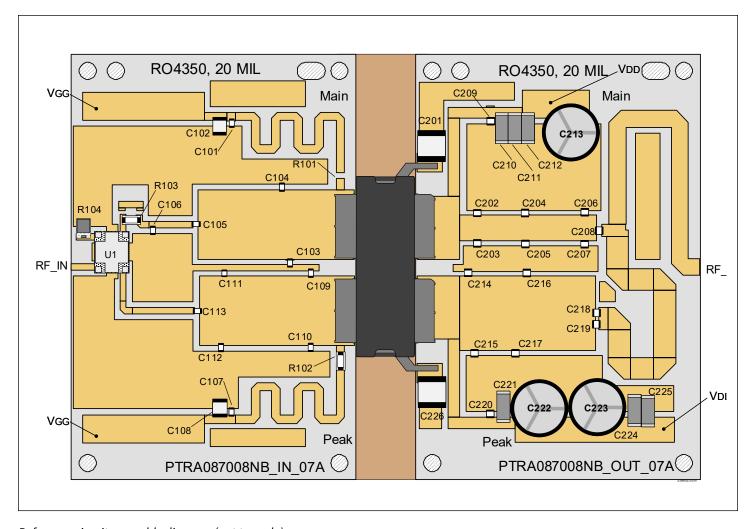
Load Pull Performance

Main Side – Pulsed CW signal: 10 μ sec, 10% duty cycle, V_{DD} = 48 V, I_{DQ} = 510 mA, class AB

			P _{1dB}								
			Max Output Power					Max Drain Efficiency			
Freq [MHz]	Zs [Ω]	Zl [Ω]	Gain [dB]	Р _{оит} [dBm]	P _{OUT} [W]	ηD [%]	Zl [Ω]	Gain [dB]	P _{OUT} [dBm]	P _{OUT} [W]	ηD [%]
760	0.6 - j1.9	1.3 – j0.5	21.41	54.81	303	59.5	2.7 + j1.1	23.40	52.50	178	71.7
780	0.6 – j2.0	1.3 – j0.5	21.45	54.73	297	59.0	2.5 + j2.0	23.55	52.42	175	71.4
805	0.6 – j2.3	1.2 – j0.3	21.39	54.66	292	58.5	2.3 + j1.2	23.58	52.50	178	71.1

			P _{3dB}								
			Max Output Power					Max Drain Efficiency			
Freq [MHz]	Zs [Ω]	Zl [Ω]	Gain [dB]	P _{OUT} [dBm]	P _{OUT} [W]	ηD [%]	Zl [Ω]	Gain [dB]	P _{OUT} [dBm]	P _{OUT} [W]	ηD [%]
760	0.6 - j1.9	1.4 – j0.6	19.53	55.56	360	62.9	2.3 + j0.6	21.02	53.91	246	72.5
780	0.6 – j2.0	1.3 – j0.6	19.52	55.49	354	61.7	2.3 + j0.6	21.24	53.92	247	72.3
805	0.6 – j2.3	1.3 – j0.6	19.62	55.44	350	61.7	2.0 + j0.5	21.13	54.15	260	71.0

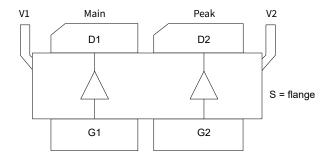
Peak Side – Pulsed CW signal: 10 μ sec, 10% duty cycle, V_{DD} = 48 V, $V_{GS(PEAK)}$ = 2.4 V, class B


			P_{1dB}								
		Max Output Power					Max Drain Efficiency				
Freq [MHz]	Zs [Ω]	Zl [Ω]	Gain [dB]	Р _{оит} [dBm]	P _{OUT} [W]	ηD [%]	Zl [Ω]	Gain [dB]	Р _{оит} [dBm]	P _{OUT} [W]	ηD [%]
760	0.3 – j2.1	0.7 – j0.6	19.78	56.85	484	60.1	1.2 + j0.4	21.46	54.72	296	73.2
780	0.5 – j2.3	0.8 – j0.4	20.13	56.75	473	61.0	1.3 + j0.6	21.40	54.56	286	73.0
805	0.7 – j2.8	0.8 – j0.3	19.91	56.65	462	61.1	1.4 + j0.8	21.40	54.12	258	72.2

			P_{3dB}									
			Max Output Power					Max Drain Efficiency				
Freq [MHz]	Zs [Ω]	Zl [Ω]	Gain [dB]	P _{OUT} [dBm]	P _{OUT} [W]	ηD [%]	Zl [Ω]	Gain [dB]	Р _{оит} [dBm]	P _{OUT} [W]	ηD [%]	
760	0.3 – j2.1	0.8 – j0.7	17.86	57.63	579	62.8	1.2 + j0.2	19.35	55.84	384	74.3	
780	0.5 – j2.3	0.8 – j0.5	18.16	57.45	556	62.4	1.3 + j0.4	19.39	55.49	354	73.3	
805	0.7 – j2.8	0.8 – j0.3	17.90	57.34	542	62.4	1.1 + j0.5	19.13	55.50	355	72.7	

Evaluation Board, 755 to 805 MHz

Evaluation Board Part Number	LTA/PTRA087008NB-V1
PCB Information	Rogers 4360, 0.508 mm [0.020"] thick, 2 oz. copper, $\varepsilon_r = 3.66$


Reference circuit assembly diagram (not to scale)

Components Information

Component	Description	Manufacturer	P/N	
Input				
C101, C105,C107, C113	Capacitor, 43 pF	ATC	ATC600F430JW250T	
C102, C108	Capacitor, 10 μF	Taiyo Yuden	UMK325C7106MM-T	
C103	Capacitor, 6.8 pF	ATC	ATC600F6R8JW250T	
C104	Capacitor, 7.5 pF	ATC	ATC600F7R5JW250T	
C106	Capacitor, 3.0 pF	ATC	ATC600F3R0CT250T	
C109, C111, C112	Capacitor, 2.0 pF	ATC	ATC600F2R0CW250T	
C110	Capacitor, 9.1 pF	ATC	ATC600F9R1JW250T	
R101, R102	Resistor, 6.2 ohms	Panasonic	P6.2ECT-ND	
R103	Resistor, 5.1 ohms	Panasonic	P5.1ETR-ND	
R104	Resistor, 50 ohms	Anaren	C8A50Z4A	
U1	Hybrid coupler	Anaren	X3C09P1-03S	
Output				
C201, C210, C211, C212, C221, C224, C225, C226	Capacitor, 10 μF, 100 V	TDK Corporation	C5750X7S2A106M230KB	
C202	Capacitor, 9.1 pF	ATC	ATC600F9R1JW250T	
C203	Capacitor, 8.2 pF	ATC	ATC600F8R2JW250T	
C204	Capacitor, 3.0 pF	ATC	ATC600F3R0CW250T	
C205	Capacitor, 2.2 pF	ATC	ATC600F2R2CW250T	
C206, C207	Capacitor, 0.6 pF	ATC	ATC600F0R6CW250T	
C208, C214, C215	Capacitor, 10 pF	ATC	ATC600F100JW250T	
C209, C218, C219, C220	Capacitor, 43 pF	ATC	ATC600F430JW250T	
C213, C222, C223	Capacitor, 100 μF, 63 V	Panasonic	EEE-FK1J101P	
C216, C217	C216, C217 Capacitor, 6.2 pF		ATC600F6R2JW250T	

Pinout Diagram (top view)

Pin	Description
D1	Drain device 1 (Main)
D2	Drain device 2 (Peak)
G1	Gate device 1 (Main)
G2	Gate device 2 (Peak)
S	Source (flange)
V1, V2	Drain video decoupling, no DC Bias

Lead connections for PTRA087008NB

Package Outline Specifications - Package PG-HB2SOF-6-1 (top and side views)

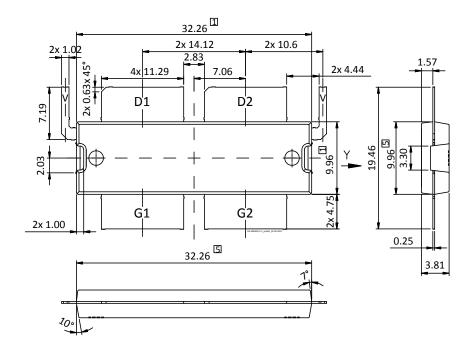


Diagram Notes—unless otherwise specified:

- 1. Mold/dam bar/metal protrusion of 0.30 mm max per side not included.
- 2. Fillets and radii: all radii are 0.3 mm max.
- 3. Interpret dimensions and tolerances per ISO 8015.
- 4. Dimensions are mm.
- 5. Does not include mold/dam bar and metal protrusion.
- 6. All tolerances \pm 0.1 mm unless specified otherwise.
- 7. All metal surfaces tin pre-plated, except area of cut.
- 8. Lead thickness: 0.25 mm.
- 9. Pins: D1, D2 drain; G1, G2 gate; S source;
 - V drain video decoupling, no DC bias

Package Outline Specifications (cont.) - Package PG-HB2SOF-6-1 (bottom view)

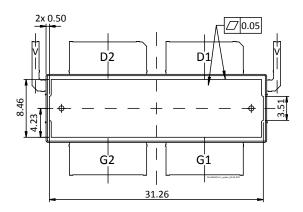


Diagram Notes—unless otherwise specified:

- 1. Mold/dam bar/metal protrusion of 0.30 mm max per side not included.
- 2. Fillets and radii: all radii are 0.3 mm max.
- 3. Interpret dimensions and tolerances per ISO 8015.
- 4. Dimensions are mm.
- 5. Does not include mold/dam bar and metal protrusion.
- 6. All tolerances \pm 0.1 mm unless specified otherwise.
- 7. All metal surfaces tin pre-plated, except area of cut.
- 8. Lead thickness: 0.25 mm.
- 9. Pins: D1, D2 drain; G1, G2 gate; S source;
 - V drain video decoupling, no DC bias

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.