PTMC210404MD

Wideband LDMOS Two-stage Integrated Power Amplifier $2 \times 20 \mathrm{~W}, 28 \mathrm{~V}, 1805-2200 \mathrm{MHz}$

Description

The PTMC210204MD is a wideband, two-stage LDMOS integrated amplifier intended for wideband driver applications. It has internal matching for operation from 1805 to 2200 MHz . It features on-chip matching high efficiency, and dual independent outputs with 20 W of output power each. It is available in a 14-lead plastic overmold package with gull wing leads.

Package Types: PG-HB1DSO-14-4 (formed leads)

Features

- On-chip matching for broadband operation
- Typical pulsed CW performance, $1990 \mathrm{MHz}, 28 \mathrm{~V}$, combined outputs
- Output power at $\mathrm{P} 1 \mathrm{~dB}=37 \mathrm{~W}$
- Linear Gain = 31.5 dB
- Efficiency = 53.1\%
- Capable of handling 10:1 VSWR @28 V, 37 W (CW) output power
- Integrated ESD protection
- Human Body Model Class 1B (per ANSI/ESDA/JEDEC JS-001)
- Integrated temperature compensation
- Pb-free and RoHS compliant

RF Characteristics

Single-carrier WCDMA Specifications (tested in the test fixture)
$V_{D D}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ} 1(\mathrm{~A}+\mathrm{B})}=63 \mathrm{~mA}, \mathrm{I}_{\mathrm{DQ} 2(\mathrm{~A}+\mathrm{B})}=219 \mathrm{~mA}, \mathrm{P}_{\mathrm{OUT}}=5 \mathrm{~W}$ avg, $\mathrm{f}=1990 \mathrm{MHz}, 3 G P P$ WCDMA signal, channel bandwidth $=3.84$
MHz , peak/average $=7.5 \mathrm{~dB}$ @ 0.01\% CCDF

Characteristic	Symbol	Min.	Typ.	Max.	Unit
Linear Gain	G_{ps}	29	30	-	dB
Power Added Efficiency	PAE	17.5	18.5	-	$\%$
Adjacent Channel Power Ratio	ACPR	-	-49.5	-47.5	dBc
Output PAR @ 0.01\% CCDF	OPAR	7.0	7.2	-	dB

Note:
All published data at $\mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$ unless otherwise indicated
ESD: Electrostatic discharge sensitive device-observe handling precautions!

DC Characteristics

Stage 1	Symbol	Min.	Typ.	Max.	Unit	Conditions
Drain Leakage Current	$\mathrm{I}_{\text {DSS }}$	-	-	0.1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
		-	-	1.0		$\mathrm{V}_{\mathrm{DS}}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
Gate Leakage Current	$\mathrm{I}_{\text {GSS }}$	-	-	0.1		$\mathrm{V}_{\mathrm{GS}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
On-State Resistance	$\mathrm{R}_{\text {DS(on) }}$	-	5	-	Ω	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.1 \mathrm{~V}$
Operating Gate Voltage	$V_{G S 1}$	-	2.7	-	V	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ} 1}=63 \mathrm{~mA}$
Fixture Operating Gate Voltage		-	4.9	-		

Stage 2	Symbol	Min.	Typ.	Max.	Unit	Conditions
Drain-source Breakdown Voltage	$\mathrm{V}_{\text {BR(DSS }}$	64	-	-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$
Drain Leakage Current	$I_{\text {DSS }}$	-	-	0.1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
		-	-	1.0		$\mathrm{V}_{\mathrm{DS}}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
Gate Leakage Current	$\mathrm{I}_{\text {GSS }}$	-	-	0.1		$\mathrm{V}_{\mathrm{GS}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
On-State Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	-	1.5	-	Ω	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.1 \mathrm{~V}$
Operating Gate Voltage	$V_{G S 2}$	-	2.7	-	V	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ} 2}=219 \mathrm{~mA}$
Fixture Operating Gate Voltage		-	4.9	-		

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\text {DSS }}$	65	V
Gate-Source Voltage	$\mathrm{V}_{\text {GS }}$	-6 to +10	
Junction Temperature	T_{J}	225	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{STG}}$	-65 to +150	
Operating Voltage	V_{DD}	0 to 32	V

Thermal Characteristics

Characteristic	Symbol	Value	Unit	Conditions
Thermal Resistance Stage 1	$\mathrm{R}_{\theta \mathrm{JJC}}$	6.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$	$\mathrm{T}_{\text {CASE }}=70^{\circ} \mathrm{C}, 37 \mathrm{~W} \mathrm{CW}$
		1.4		$\mathrm{~T}_{\text {CASE }}=70^{\circ} \mathrm{C}, 37 \mathrm{~W} \mathrm{CW}$
Thermal Resistance Stage 2				

Moisture Sensitivity Level

Level	Test Standard	Package Temperature	Unit
3	IPC/JEDEC J-STD-020	260	${ }^{\circ} \mathrm{C}$

Ordering Information

Type and Version	Order Code	Package Description	Shipping
PTMC210404MD V2 R5	PTMC210404MD-V2-R5	PG-HB1DSO-14-4, 14-lead, overmold	Tape \& Reel, 500 pcs

Evaluation Boards

Order Code	Frequency	Description
LTN/PTMC210404MD-V2	$1805-2200 \mathrm{MHz}$	Class AB with combined outputs, R04350, 0.508 mm thick

Typical Performance (data taken in a production test fixture)

Figure 1. Single-carrier WCDMA Drive-up

$$
\begin{gathered}
\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ} 1}=124 \mathrm{~mA}, \mathrm{I}_{\mathrm{DQ} 2}=438 \mathrm{~mA}, \\
f=1990 \mathrm{MHz}, 3 \mathrm{GPP} \mathrm{WCDMA} \text { signal, } \\
\mathrm{PAR}=7.50 \mathrm{~dB}, \mathrm{BW}=3.84 \mathrm{MHz}
\end{gathered}
$$

Figure 2. Single-carrier WCDMA Broadband Performance
$\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ} 1}=124 \mathrm{~mA}, \mathrm{I}_{\mathrm{DQ} 2}=438 \mathrm{~mA}$,
$\mathrm{P}_{\text {OUt }}=37 \mathrm{dBm}, 3 \mathrm{GPP}$ WCDMA signal, $P A R=7.50 \mathrm{~dB}$

Typical Performance (cont.)

Figure 3. Single-carrier WCDMA Broadband Performance

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ} 1}=124 \mathrm{~mA}, \mathrm{I}_{\mathrm{DQ} 2}=438 \mathrm{~mA}, \\
& \mathrm{P}_{\mathrm{OUT}}=37 \mathrm{dBm}, 3 \mathrm{GPP} \text { WCDMA signal, }
\end{aligned}
$$

$$
\mathrm{PAR}=7.50 \mathrm{~dB}
$$

Figure 5. Small Signal CW Gain \& Input Return Loss

$$
\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ} 1}=124 \mathrm{~mA}, \mathrm{I}_{\mathrm{DQ} 2}=438 \mathrm{~mA}
$$

4

Load Pull Performance

Load Pull Performance - Pulsed CW signal: $\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ} 1}=63 \mathrm{~mA}, \mathrm{I}_{\mathrm{DQ} 2}=219 \mathrm{~mA}$, class AB , each side

Class AB		$\mathrm{P}_{1 \mathrm{~dB}}$									
		Max Output Power					Max Drain Efficiency				
Freq [MHz]	Zs [Ω]	Z1 [Ω]	Gain [dB]	$\begin{aligned} & \mathrm{P}_{\mathrm{out}} \\ & {[\mathrm{dBm}]} \end{aligned}$	$\mathrm{P}_{\text {out }}[\mathrm{W}]$	PAE [\%]	Z1 [Ω]	Gain [dB]	$\begin{aligned} & \mathrm{P}_{\mathrm{out}} \\ & {[\mathrm{dBm}]} \end{aligned}$	$\mathrm{P}_{\text {OUT }}[\mathrm{W}]$	PAE [\%]
1805	49.8+j2.3	8.8-j6.30	29.8	43.8	23.8	51.2	13.4-j3.7	31.0	42.9	19.4	55.9
1960	49.9-j0.1	8.5-j8.20	29.5	43.8	23.9	50.5	10.9-j2.4	31.0	42.7	18.5	57.0
2170	51.9+j0.2	7.4-j7.60	27.9	43.9	24.3	51.8	7.10-j3.8	29.0	42.9	19.6	56.6
2200	49.3+j1.0	7.7-j7.70	27.6	43.8	23.8	51.5	6.90-j3.7	28.8	42.8	19.0	56.6

Evaluation Board, 1805-2200 MHz

Reference circuit assembly diagram (not to scale)

Evaluation Board, 1805-2200 MHz (cont.)

Evaluation Board Part No.	LTN/PTMC210404MD-V2
PCB Information	Rogers 4350B, $0.508 \mathrm{~mm}[0.020$ " $]$ thick, 2 oz. copper, $\varepsilon_{\mathrm{r}}=3.66, f=1805-2200 \mathrm{MHz}$

Components Information

Component	Description	Manufacturer	P/N
Input	Murata Electronics North America	GRM32ER71H475KA88L	
C101, C103, C105, C107, C109, C111, C203, C207	Capacitor, 4.7 $\mu \mathrm{F}$	Taiyo Yuden	UMK325C7106MM-T
C102, C104, C106, C108, C110, C112, C202, C206	Capacitor, $10 \mu \mathrm{~F}$	ATC	ATC800A100JT250T
C201, C204, C205, C208	Capacitor, 10 pF	Panasonic Electronic Components	ERJ-3GEY0R00V
R101, R103	Resistor, 0.0 ohms	Resistor, 50 ohms	Anaren
R102, R201	Panasonic Electronic Components	ERJ-8GEYOZ4A	
R104, R105, R106, R107	Resistor, 1 K ohms	Panasonic Electronic Components	ERJ-8GEYJ432V
R108, R109, R110, R111	Resistor, 4.3K ohms	Hybrid Coupler	Anaren
U1, U2		X3C21P1-03S	

Pinout Diagram

Source: plated copper heat slug on backside of package

Package Outline Specifications - Package PG-HB1DSO-14-4

Diagram Notes-unless otherwise specified:

1. Mold/Dam Bar/Metal protrusion of 0.30 mm max per side not included.
2. Metal protrusion are connected to source and shall not exceed 0.10 mm max.
3. Fillets and radii: all radii are 0.3 mm max.
4. Interpret dimensions and tolerances per ISO 8015.
5. Dimensions are mm .
6. All tolerances $\pm 0.1 \mathrm{~mm}$ unless specified otherwise.
7. All metal surfaces are tin-plated, except area of cut.
8. Lead thickness: 0.25 mm .

7

Notes \& Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

