GaN Power Amplifier, 28 V, 125 W
2.1 - 2.7 GHz

Features
• GaN on Si HEMT D-Mode Power Amplifier
• Suitable for Linear & Saturated Applications
• Broadband Operation from 2.1 - 2.7 GHz
• 125 W P3dB Peak Envelope Power
• 90 W P3dB CW Power
• 10 W Linear Power @ 2% EVM for Single Carrier OFDM, 10.3 dB peak/avg., 10 MHz channel bandwidth
• 16.5 dB Gain
• 26% Efficiency
• Characterized for Operation up to 32 V
• 100% RF Tested
• Thermally Enhanced Industry Standard Package
• High Reliability Gold Metallization Process
• RoHS* Compliant

Applications
• Defense Communications
• Land Mobile Radio
• Avionics
• Wireless Infrastructure
• ISM
• VHF/UHF/L/S-Band Radar

Description
The NPT25100 GaN on silicon HEMT D-Mode amplifier optimized for 2.1 - 2.7 GHz operation. This device supports CW, pulsed, and linear operation with output power levels to 125 W in an industry standard plastic package with bolt down flange.

RF Specifications (CW)\(^1\): Freq: = 2500 MHz, \(V_{DS} = 28\) V, \(I_{DQ} = 60\) mA, \(T_{C} = 25^\circ\)C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Output Power</td>
<td>3 dB Gain Compression</td>
<td>(P_{3dB})</td>
<td>80</td>
<td>90</td>
<td>—</td>
<td>W</td>
</tr>
<tr>
<td>Small Signal Gain</td>
<td>—</td>
<td>(G_{SS})</td>
<td>14.0</td>
<td>16.5</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Drain Efficiency</td>
<td>3 dB Gain Compression</td>
<td>(\eta)</td>
<td>55</td>
<td>62</td>
<td>—</td>
<td>%</td>
</tr>
</tbody>
</table>

1. Measured in test fixture.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.
GaN Power Amplifier, 28 V, 125 W
2.1 - 2.7 GHz

Typical 2-Tone Performance:
Freq. = 2500 MHz, $V_{DS} = 28$ V, $I_{DQ} = 600$ mA, Tone spacing = 1 MHz, $T_C = 25^\circ$C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Envelope Power</td>
<td>3 dB Gain Compression</td>
<td>$P_{3\text{dB},\text{PEP}}$</td>
<td>—</td>
<td>125</td>
<td>—</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>1 dB Gain Compression</td>
<td>$P_{1\text{dB},\text{PEP}}$</td>
<td>—</td>
<td>90</td>
<td>—</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>-35 dB Gain Compression</td>
<td>P_{IMD3}</td>
<td>—</td>
<td>80</td>
<td>—</td>
<td>W</td>
</tr>
</tbody>
</table>

2. Measured in Load Pull System (Refer to Table 1 and Figure 1).

Typical OFDM Performance:
Freq. = 2500 - 2700 MHz, $V_{DS} = 28$ V, $I_{DQ} = 600$ mA, $P_{\text{OUT}/\text{Avg.}} = 10$ W, $T_C = 25^\circ$C
Single carrier OFDM waveform 64-QAM 3/4, 8 burst, continuous frame data, 10 MHz channel bandwidth. Peak/Avg = 10.3 dB @ 0.01% probability on CCDF.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Gain</td>
<td>—</td>
<td>G_P</td>
<td>—</td>
<td>16.5</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Drain Efficiency</td>
<td>—</td>
<td>η</td>
<td>—</td>
<td>26.0</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td>Error Vector Magnitude</td>
<td>—</td>
<td>EVM</td>
<td>—</td>
<td>2.0</td>
<td>—</td>
<td>%</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics: $T_A = 25^\circ$C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain Source Breakdown Voltage</td>
<td>$V_{GS} = -8$ V, $I_D = 36$ mA</td>
<td>V_{BDS}</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>Drain Source Leakage Current</td>
<td>$V_{GS} = -8$ V, $V_{DS} = 60$ V</td>
<td>I_{DLK}</td>
<td>—</td>
<td>9</td>
<td>18</td>
<td>mA</td>
</tr>
<tr>
<td>On Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>$V_{DS} = 28$ V, $I_D = 36$ mA</td>
<td>V_T</td>
<td>-2.3</td>
<td>-1.8</td>
<td>-1.3</td>
<td>V</td>
</tr>
<tr>
<td>Gate Quiescent Voltage</td>
<td>$V_{DS} = 28$ V, $I_D = 70$ mA</td>
<td>V_{GSO}</td>
<td>-2.0</td>
<td>-1.5</td>
<td>-1.0</td>
<td>V</td>
</tr>
<tr>
<td>On Resistance</td>
<td>$V_{GS} = 2$ V, $I_D = 270$ mA</td>
<td>R_{ON}</td>
<td>—</td>
<td>0.13</td>
<td>0.14</td>
<td>Ω</td>
</tr>
<tr>
<td>Drain Current</td>
<td>$V_{DS} = 7$ V pulsed, 300 μs pulse width, 0.2% duty cycle</td>
<td>$I_{D,\text{MAX}}$</td>
<td>—</td>
<td>21.0</td>
<td>—</td>
<td>A</td>
</tr>
</tbody>
</table>
GaN Power Amplifier, 28 V, 125 W
2.1 - 2.7 GHz

Absolute Maximum Ratings3,4,5

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Source Voltage, V_{DS}</td>
<td>100 V</td>
</tr>
<tr>
<td>Gate Source Voltage, V_{GS}</td>
<td>-10 V to +3 V</td>
</tr>
<tr>
<td>Gate Current, I_G</td>
<td>180 mA</td>
</tr>
<tr>
<td>Total Power Dissipation, P_T</td>
<td>100 W</td>
</tr>
<tr>
<td>Junction Temperature, T_J</td>
<td>+200°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

3. Exceeding any one or combination of these limits may cause permanent damage to this device.
4. MACOM does not recommend sustained operation near these survivability limits.
5. Operating at nominal conditions with $T_J \leq 200°C$ will ensure $MTTF > 1 \times 10^6$ hours.

Thermal Characteristics6

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Typical</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance</td>
<td>$V_{DS} = 48 V, T_J = 145°C$</td>
<td>R_{JEC}</td>
<td>1.75</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM (>2000 V), MM (>100 V) Class 1B devices.
Load-Pull Performance: \(V_{DS} = 48 \, \text{V}, \, I_{DQ} = 600 \, \text{mA}, \, T_{C} = 25^\circ \text{C} \)
Reference Plane at Device Leads, CW Drain Efficiency and Output Power Tradeoff Impedance

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>(Z_S) (Ω)</th>
<th>(Z_L) (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2140</td>
<td>12.1 - j20.0</td>
<td>2.6 - j2.6</td>
</tr>
<tr>
<td>2300</td>
<td>10.0 - j3.0</td>
<td>2.5 - j2.3</td>
</tr>
<tr>
<td>2400</td>
<td>9.5 - j3.0</td>
<td>2.5 - j2.5</td>
</tr>
<tr>
<td>2500</td>
<td>9.0 - j3.0</td>
<td>2.5 - j2.7</td>
</tr>
<tr>
<td>2600</td>
<td>8.5 - j3.0</td>
<td>2.5 - j3.1</td>
</tr>
<tr>
<td>2700</td>
<td>8.0 - j3.0</td>
<td>2.5 - j3.3</td>
</tr>
</tbody>
</table>

Impedance Reference

\(Z_S \) is the source impedance presented to the device.
\(Z_L \) is the load impedance presented to the device.

Figure 1 - Optimal impedance for CW performance, \(V_{DS} = 28 \, \text{V}, \, I_{DQ} = 600 \, \text{mA} \).
GaN Power Amplifier, 28 V, 125 W
2.1 - 2.7 GHz

Typical CW Performance in Loadpull System:

Drain Efficiency & Gain
28 V, 600 mA, 2300 - 2700 MHz

Drain Efficiency & Gain
28 V & 32 V, 600 mA, 2500 MHz

P3dB, Drain Efficiency & Gain
28 V, 600 mA

Drain Efficiency & Gain
28 V & 32 V, 600 mA, 2500 MHz, Tone Spacing = 1 MHz
GaN Power Amplifier, 28 V, 125 W
2.1 - 2.7 GHz

Typical CW Performance in Loadpull System:

Drain Efficiency, Gain, & IMD3
28 V, 600 mA, 2500 MHz, Tone Spacing = 1 MHz

Drain Efficiency, Gain, & IMD3
28 V, 600 mA, 2500 MHz, Tone Spacing = 1 MHz
10 µs Pulse Width, 1% Duty Cycle

Power
28 V, 600 mA, 2500 MHz, 1% Duty Cycle

Drain Efficiency, Gain, & EVM
28 V & 32 V, 600 mA, 2500 MHz

For further information and support please visit: https://www.macom.com/support

DC-0008204

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.
GaN Power Amplifier, 28 V, 125 W
2.1 - 2.7 GHz

Typical CW Performance in Loadpull System:

\[
\text{Drain Efficiency, Gain, & EVM}
\]
\[
28 \text{ V} \& 32 \text{ V}, 600 \text{ mA}, 2500 \text{ MHz}
\]
\[
P_{\text{OUT, AVG}} = 10 \text{ W}
\]

Typical Performance:

Power Derating

MTTF
GaN Power Amplifier, 28 V, 125 W
2.1 - 2.7 GHz

Typical Performance in MACOM Evaluation Circuit:

Drain Efficiency, Gain, & EVM
28 V, 500 - 1000 mA, 2500 MHz

Drain Efficiency, Gain, & EVM
28 V, 600 mA, 2110 - 2170 MHz

Drain Efficiency & EVM
28 V, 500 - 1000 mA, 2500 MHz
GaN Power Amplifier, 28 V, 125 W
2.1 - 2.7 GHz

Typical Performance in MACOM Evaluation Circuit:

Gain
28 V, 500 - 1000 mA, 2500 MHz

![Gain Graph](image)

Drain Efficiency, Gain, & EVM
28 V, 600 mA, 2500 MHz

![Drain Efficiency, Gain, & EVM Graph](image)

S-Parameters
28 V, 600 mA

![S-Parameters Graph](image)

Quiescent Gate Voltage
28 V

![Quiescent Gate Voltage Graph](image)
Evaluation Board and Recommended Tuning Solution
2500 MHz Narrowband Circuit

Description
Parts measured on evaluation board (30-mil thick RO4350). The PCB’s electrical and thermal ground is provided using a standard-plated densely packed via hole array (see recommended via pattern).

Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing
Turning the device ON
1. Set V_{GS} to the pinch-off (V_P), typically -5 V.
2. Turn on V_{DS} to nominal voltage (48 V).
3. Increase V_{GS} until the I_{DS} current is reached.
4. Apply RF power to desired level.

Turning the device OFF
1. Turn the RF power off.
2. Decrease V_{GS} down to V_P.
3. Decrease V_{DS} down to 0 V.
4. Turn off V_{GS}.
GaN Power Amplifier, 28 V, 125 W
2.1 - 2.7 GHz

Evaluation Board and Recommended Tuning Solution
2500 MHz Circuit

Parts list

<table>
<thead>
<tr>
<th>Reference</th>
<th>Value</th>
<th>Tolerance</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3.3 pF</td>
<td>±0.1 pF</td>
<td>ATC</td>
<td>ATC600F3R3B</td>
</tr>
<tr>
<td>C2</td>
<td>1.2 pF</td>
<td>±0.1 pF</td>
<td>ATC</td>
<td>ATC100B1R2BT</td>
</tr>
<tr>
<td>C3</td>
<td>1 µF</td>
<td>20%</td>
<td>Panasonic</td>
<td>ECJ-5YB2A105M</td>
</tr>
<tr>
<td>C4, C7</td>
<td>0.1 µF</td>
<td>10%</td>
<td>Kemet</td>
<td>C1206C104K1RACTU</td>
</tr>
<tr>
<td>C5, C8</td>
<td>0.01 µF</td>
<td>10%</td>
<td>AVX</td>
<td>12061C103KAT2A</td>
</tr>
<tr>
<td>C6</td>
<td>1 µF</td>
<td>10%</td>
<td>Panasonic</td>
<td>ECJ-5YB2A105M</td>
</tr>
<tr>
<td>C9</td>
<td>150 µF</td>
<td>20%</td>
<td>Nichicon</td>
<td>UPW1C151MED</td>
</tr>
<tr>
<td>C10</td>
<td>270 µF</td>
<td>20%</td>
<td>United Chmi-Con</td>
<td>ELXY630ELL271MK25S</td>
</tr>
<tr>
<td>C11, C12</td>
<td>33 pF</td>
<td>5%</td>
<td>ATC</td>
<td>ATC600F330B</td>
</tr>
<tr>
<td>C13</td>
<td>0.9 pF</td>
<td>±0.1 pF</td>
<td>ATC</td>
<td>ATC600F0R9B</td>
</tr>
<tr>
<td>C14</td>
<td>1.8 pF</td>
<td>±0.1 pF</td>
<td>ATC</td>
<td>ATC600F1R8B</td>
</tr>
<tr>
<td>C15</td>
<td>Do Not Place</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C16</td>
<td>0.8 pF</td>
<td>±0.1 pF</td>
<td>ATC</td>
<td>ATC600F0R8B</td>
</tr>
<tr>
<td>PA1</td>
<td>—</td>
<td>—</td>
<td>MACOM</td>
<td>NPT25100B</td>
</tr>
<tr>
<td>R1</td>
<td>10 Ω</td>
<td>1%</td>
<td>Panasonic</td>
<td>ERJ-2RKF10R0X</td>
</tr>
<tr>
<td>R2</td>
<td>0.033 Ω</td>
<td>5%</td>
<td>Coilcraft</td>
<td>ERJ-6RQFR33V</td>
</tr>
<tr>
<td>PCB</td>
<td>—</td>
<td>—</td>
<td>Rogers RO4350, εr=3.5, 30 mil</td>
<td>—</td>
</tr>
</tbody>
</table>
GaN Power Amplifier, 28 V, 125 W
2.1 - 2.7 GHz

Outline Drawing NPT25100B†

† Reference Application Note AN3025 for mounting/soldering recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is Ni/Au.
GaN Power Amplifier, 28 V, 125 W
2.1 - 2.7 GHz

Outline Drawing NPT25100P†

† Reference Application Note AN3025 for mounting/soldering recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is Ni/Au.
GaN Power Amplifier, 28 V, 125 W
2.1 - 2.7 GHz

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM’s products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.