NPT2010

GaN on Silicon General Purpose Amplifier
DC - 2.2 GHz, 48 V, 100 W

Features
- GaN on Si HEMT D-Mode Amplifier
- Suitable for Linear & Saturated Applications
- Tunable from DC - 2.2 GHz
- 48 V Operation
- 15 dB Gain @ 2.15 GHz
- 61% Drain Efficiency @ 2.15 GHz
- 100% RF Tested
- Industry Standard Metal-Ceramic Package
- RoHS* Compliant

Description
The NPT2010 is a GaN HEMT general purpose amplifier optimized for DC - 2.2 GHz operation. This device supports CW, pulsed, and linear operation with output power levels to 100 W (50 dBm) in an industry standard metal-ceramic package with bolt down flange.

The NPT2010 is ideally suited for defense communications, land mobile radio, avionics, wireless infrastructure, ISM applications and VHF/UHF/L/S-band radar.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPT2010</td>
<td>bulk quantity</td>
</tr>
<tr>
<td>NPT2010-SMBPPR</td>
<td>sample</td>
</tr>
</tbody>
</table>

Functional Schematic

Pin Configuration

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Pin Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RF IN / V G</td>
<td>RF Input / Gate</td>
</tr>
<tr>
<td>2</td>
<td>RF OUT / V D</td>
<td>RF Output / Drain</td>
</tr>
<tr>
<td>3</td>
<td>Flange¹</td>
<td>Ground / Source</td>
</tr>
</tbody>
</table>

¹ The Flange must be connected to RF and DC ground. This path must also provide a low thermal resistance heat path.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.
RF Electrical Specifications: $T_C = +25^\circ C$, $V_{DS} = 48 \, \text{V}$, $I_{DQ} = 600 \, \text{mA}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Signal Gain</td>
<td>CW, 2.15 GHz</td>
<td>G_{SS}</td>
<td>-</td>
<td>17</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Saturated Output Power</td>
<td>CW, 2.15 GHz</td>
<td>P_{SAT}</td>
<td>-</td>
<td>50.5</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>Drain Efficiency at Saturation</td>
<td>CW, 2.15 GHz</td>
<td>η_{SAT}</td>
<td>-</td>
<td>64</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>Power Gain</td>
<td>2.15 GHz, $P_{OUT} = 95 , \text{W}$</td>
<td>G_P</td>
<td>13.5</td>
<td>15</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Drain Efficiency</td>
<td>2.15 GHz, $P_{OUT} = 95 , \text{W}$</td>
<td>η</td>
<td>52.5</td>
<td>61</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>Ruggedness: Output Mismatch</td>
<td>All phase angles</td>
<td>ψ</td>
<td>VSWR = 10:1, No Device Damage</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DC Electrical Characteristics: $T_C = +25^\circ C$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Leakage Current</td>
<td>$V_{GS} = -8 , \text{V}, V_{DS} = 160 , \text{V}$</td>
<td>I_{DLK}</td>
<td>-</td>
<td>-</td>
<td>24</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-Source Leakage Current</td>
<td>$V_{GS} = -8 , \text{V}, V_{DS} = 0 , \text{V}$</td>
<td>I_{GLK}</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>mA</td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>$V_{DS} = 48 , \text{V}, I_{D} = 24 , \text{mA}$</td>
<td>V_T</td>
<td>-2.5</td>
<td>-1.5</td>
<td>-0.5</td>
<td>V</td>
</tr>
<tr>
<td>Gate Quiescent Voltage</td>
<td>$V_{DS} = 48 , \text{V}, I_{D} = 600 , \text{mA}$</td>
<td>V_{GSQ}</td>
<td>-2.1</td>
<td>-1.2</td>
<td>-0.3</td>
<td>V</td>
</tr>
<tr>
<td>On Resistance</td>
<td>$V_{DS} = 2 , \text{V}, I_{D} = 180 , \text{mA}$</td>
<td>R_{ON}</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>Ω</td>
</tr>
<tr>
<td>Maximum Drain Current</td>
<td>$V_{DS} = 7 , \text{V}$ pulsed, pulse width 300 μs</td>
<td>$I_{D,MAX}$</td>
<td>-</td>
<td>14</td>
<td>-</td>
<td>A</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings2,3,4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Source Voltage, V_{DS}</td>
<td>160 V</td>
</tr>
<tr>
<td>Gate Source Voltage, V_{GS}</td>
<td>-10 to 3 V</td>
</tr>
<tr>
<td>Gate Current, I_G</td>
<td>48 mA</td>
</tr>
<tr>
<td>Junction Temperature, T_J</td>
<td>+200°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

2. Exceeding any one or combination of these limits may cause permanent damage to this device.
3. MACOM does not recommend sustained operation near these survivability limits.
4. Operating at nominal conditions with $T_J \leq 200°C$ will ensure MTTF > 1×10^6 hours.

Thermal Characteristics5

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Typical</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance</td>
<td>$V_{DS} = 48 V, T_J = 200°C$</td>
<td>$R_{\theta JC}$</td>
<td>1.75</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

5. Junction temperature (T_J) measured using IR Microscopy. Case temperature measured using thermocouple embedded in heat-sink.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.
NPT2010

GaN on Silicon General Purpose Amplifier
DC - 2.2 GHz, 48 V, 100 W
Rev. V3

Load-Pull Performance: \(V_{DS} = 48 \text{ V}, \ I_{DQ} = 600 \text{ mA}, \ T_{C} = 25^\circ\text{C} \)
Reference Plane at Device Leads, CW Drain Efficiency and Output Power Tradeoff Impedance

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>(Z_S) (Ω)</th>
<th>(Z_L) (Ω)</th>
<th>(P_{\text{SAT}}) (W)</th>
<th>(G_{SS}) (dB)</th>
<th>Drain Efficiency @ (P_{\text{SAT}}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1.1 + j1.4</td>
<td>5.9 + j2.5</td>
<td>140</td>
<td>25.9</td>
<td>70</td>
</tr>
<tr>
<td>900</td>
<td>1.3 - j0.7</td>
<td>5.7 + j4.2</td>
<td>130</td>
<td>21.5</td>
<td>69</td>
</tr>
<tr>
<td>2200</td>
<td>1.9 - j4.1</td>
<td>2.7 - j0.4</td>
<td>115</td>
<td>16.1</td>
<td>64</td>
</tr>
</tbody>
</table>

Impedance Reference

![Impedance Diagram]

Z\(_S\) and Z\(_L\) vs. Frequency

![ZS and ZL vs. Frequency Diagram]

Gain vs. Output Power

![Gain vs. Output Power Graph]

Drain Efficiency vs. Output Power

![Drain Efficiency vs. Output Power Graph]
Evaluation Board and Recommended Tuning Solution

2.15 GHz Narrowband Circuit

Description
Parts measured on evaluation board (20-mil thick RO4350). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing
Turning the device ON
1. Set V_{GS} to the pinch-off (V_P), typically -5 V.
2. Turn on V_{DS} to nominal voltage (48 V).
3. Increase V_{GS} until the I_{DS} current is reached.
4. Apply RF power to desired level.

Turning the device OFF
1. Turn the RF power off.
2. Decrease V_{GS} down to V_P.
3. Decrease V_{DS} down to 0 V.
4. Turn off V_{GS}.
GaN on Silicon General Purpose Amplifier
DC - 2.2 GHz, 48 V, 100 W

Evaluation Board and Recommended Tuning Solution
2.15 GHz Narrowband Circuit

Parts list

<table>
<thead>
<tr>
<th>Reference</th>
<th>Value</th>
<th>Tolerance</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C5</td>
<td>1.0 µF</td>
<td>10%</td>
<td>AVX</td>
<td>12101C105KAT2A</td>
</tr>
<tr>
<td>C2, C6</td>
<td>0.1 µF</td>
<td>10%</td>
<td>Kemet</td>
<td>C1206C104K1RACTU</td>
</tr>
<tr>
<td>C3, C7</td>
<td>0.01 µF</td>
<td>10%</td>
<td>AVX</td>
<td>1206C103KAT2A</td>
</tr>
<tr>
<td>C4, C8</td>
<td>1000 pF</td>
<td>10%</td>
<td>Kemet</td>
<td>C0805C102K1RACTU</td>
</tr>
<tr>
<td>C9</td>
<td>240 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC600F241B</td>
</tr>
<tr>
<td>C10</td>
<td>10 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC800B100B</td>
</tr>
<tr>
<td>C11</td>
<td>1.0 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC800B1R0B</td>
</tr>
<tr>
<td>C12</td>
<td>0.8 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC600F0R8B</td>
</tr>
<tr>
<td>C13</td>
<td>0.9 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC600F0R9B</td>
</tr>
<tr>
<td>C14</td>
<td>10 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC800B1R0B</td>
</tr>
<tr>
<td>C15</td>
<td>1.5 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC800B1R5B</td>
</tr>
<tr>
<td>C16</td>
<td>15 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC800B150B</td>
</tr>
<tr>
<td>L1</td>
<td>12.5 nH</td>
<td>5%</td>
<td>CoilCraft</td>
<td>A04TJL</td>
</tr>
<tr>
<td>L2</td>
<td>19.4 nH</td>
<td>5%</td>
<td>CoilCraft</td>
<td>0806SQ-19NJL</td>
</tr>
<tr>
<td>L3</td>
<td>8.0 nH</td>
<td>5%</td>
<td>CoilCraft</td>
<td>A03TJL</td>
</tr>
<tr>
<td>R1</td>
<td>15 Ω</td>
<td>1%</td>
<td>Panasonic</td>
<td>ERJ-2RKF15R0X</td>
</tr>
<tr>
<td>PCB</td>
<td></td>
<td></td>
<td>Rogers RO4350, εr = 3.5, 20 mil</td>
<td></td>
</tr>
</tbody>
</table>
GaN on Silicon General Purpose Amplifier
DC - 2.2 GHz, 48 V, 100 W

Typical Performance as measured in the 2.15 GHz evaluation board:
CW, \(V_{DS} = 48 \) V, \(I_{DQ} = 600 \) mA (unless noted)

Gain vs. Output Power over Temperature

Drain Efficiency vs. Output Power over Temperature

Quiescent \(V_{GS} \) vs. Temperature

Visit www.macom.com for additional data sheets and product information.
Typical 2-Tone Performance as measured in the 2.15 GHz evaluation board:
1 MHz ToneSpacing, $V_{DS} = 48$ V, $I_{DQ} = 600$ mA, $T_C = 25^\circ$C (unless noted)

2-Tone IMD3 vs. Output Power vs. Quiescent Current

2-Tone IMD vs. Output Power

2-Tone Gain vs. Output Power

2-Tone IMD vs. Output Power
Evaluation Board and Recommended Tuning Solution
100 - 700 MHz Broadband Circuit

Parts List

<table>
<thead>
<tr>
<th>Reference</th>
<th>Value</th>
<th>Tolerance</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>150 µF</td>
<td>20%</td>
<td>Nichicon</td>
<td>UPW1C151MED</td>
</tr>
<tr>
<td>C2, C7</td>
<td>1.0 µF</td>
<td>10%</td>
<td>AVX</td>
<td>12101C105KAT2A</td>
</tr>
<tr>
<td>C3, C6</td>
<td>0.1 µF</td>
<td>10%</td>
<td>Kemet</td>
<td>C1206C104K1RACTU</td>
</tr>
<tr>
<td>C4, C5</td>
<td>0.01 µF</td>
<td>10%</td>
<td>AVX</td>
<td>12061C103KAT2A</td>
</tr>
<tr>
<td>C8</td>
<td>270 µF</td>
<td>20%</td>
<td>United Chemi-Con</td>
<td>ELXY 630ELL271MK25S</td>
</tr>
<tr>
<td>C9</td>
<td>18 pF</td>
<td>1%</td>
<td>ATC</td>
<td>ATC100B180FT</td>
</tr>
<tr>
<td>C10, C19</td>
<td>2.4 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC100B2R4BT</td>
</tr>
<tr>
<td>C11</td>
<td>5.6 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC100B5R8BT</td>
</tr>
<tr>
<td>C12</td>
<td>15 pF</td>
<td>1%</td>
<td>ATC</td>
<td>ATC600F150FT</td>
</tr>
<tr>
<td>C13</td>
<td>220 pF</td>
<td>1%</td>
<td>ATC</td>
<td>ATC600F221FT</td>
</tr>
<tr>
<td>C14</td>
<td>12 pF</td>
<td>1%</td>
<td>ATC</td>
<td>ATC600F120FT</td>
</tr>
<tr>
<td>C15, C16</td>
<td>82 pF</td>
<td>1%</td>
<td>ATC</td>
<td>ATC100B20FT</td>
</tr>
<tr>
<td>C17</td>
<td>4.7 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC100B4R7BT</td>
</tr>
<tr>
<td>C18</td>
<td>2.0 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC100B2R0BT</td>
</tr>
<tr>
<td>R1</td>
<td>49.9 Ω</td>
<td>1%</td>
<td>Panasonic</td>
<td>ERJ-6ENF49R9V</td>
</tr>
<tr>
<td>R2</td>
<td>0.33 Ω</td>
<td>1%</td>
<td>Panasonic</td>
<td>ERJ-6RQFR33V</td>
</tr>
<tr>
<td>R3, R4</td>
<td>24.9 Ω</td>
<td>1%</td>
<td>Panasonic</td>
<td>ERJ-1TNF24R9U</td>
</tr>
<tr>
<td>F1</td>
<td>Material 73</td>
<td>-</td>
<td>Fair-Rite</td>
<td>2673000801</td>
</tr>
<tr>
<td>F2, F3</td>
<td>4:1 Transformer</td>
<td>-</td>
<td>Anaren</td>
<td>XMT031B5012</td>
</tr>
<tr>
<td>L1</td>
<td>12.5 nH</td>
<td>5%</td>
<td>Coilcraft</td>
<td>A04TJL</td>
</tr>
<tr>
<td>L2</td>
<td>~50 nH</td>
<td>-</td>
<td>16 AWG Cu Wire</td>
<td>5 turn, 0.2"ID</td>
</tr>
<tr>
<td>L3</td>
<td>5.0 nH</td>
<td>5%</td>
<td>Coilcraft</td>
<td>A02TJL</td>
</tr>
<tr>
<td>L4, L5</td>
<td>8.0 nH</td>
<td>5%</td>
<td>Coilcraft</td>
<td>A03TJL</td>
</tr>
</tbody>
</table>

For further information and support please visit: https://www.macom.com/support

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.
NPT2010

GaN on Silicon General Purpose Amplifier
DC - 2.2 GHz, 48 V, 100 W

Evaluation Board and Recommended Tuning Solution
100 - 700 MHz Broadband Circuit

Performance vs. Frequency at $P_{\text{OUT}} = P_{\text{SAT}}$

Performance vs. Frequency at $P_{\text{OUT}} = 49 \text{ dBm}$

Performance vs. Output Power ($f = 760 \text{ MHz}$)

Small Signal s-parameters vs. Frequency
AC360B-2 Metal-Ceramic Package

All dimensions shown as inches [millimeters].

† Plating is Ni / Au.