Rev. V2 #### **Features** - GaN on Si HEMT D-Mode Amplifier - Suitable for Linear & Saturated Applications - Broadband Operation from 20 1000 MHz - 50 Ω Input Matched, Output Unmatched - 28 V Operation - 14 dB Gain @ 900 MHz - 65% Drain Efficiency @ 900 MHz - 100% RF Tested - Lead-Free 6 x 5 mm 8-lead PDFN Package - Halogen-Free "Green" Mold Compound - RoHS* Compliant ### **Description** The NPA1006A is a GaN on silicon amplifier optimized for 20 - 1000 MHz operation. This amplifier has been designed for saturated and linear operation with output levels to 12.5 W (41 dBm) assembled in a lead-free 6 x 5 mm 8-lead PDFN plastic package. The NPA1006A is ideally suited for general purpose narrowband to broadband applications in test and measurement, defense communications, land mobile radio and wireless infrastructure. ### Ordering Information¹ | Part Number | Package | |-----------------|----------------| | NPA1006A | Bulk Quantity | | NPA1006A-TR0500 | 500 piece reel | | NPA1006A-SMB | Sample Board | 1. Reference Application Note M513 for reel size information. ### **Functional Schematic** ### Pin Designations | Pin # | Pin Name | Function | | |-------|------------------------------------|---------------------------|--| | 1 | V_{G} | Gate Voltage | | | 2, 3 | RF _{IN} | RF Input | | | 4, 5 | N/C ² | No Connection | | | 6, 7 | RF _{OUT} / V _D | RF Output / Drain Voltage | | | 8 | N/C ² | No Connection | | | 9 | Paddle ³ | Ground | | ^{2.} All no connection pins may be left floating or grounded. The exposed pad centered on the package bottom must be connected to RF and DC ground. This path must also provide a low thermal resistance heat path. ^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive. NPA1006A Rev. V2 ### **RF Electrical Specifications:** # T_{C} = 25°C , V_{DS} = 28 V, I_{DQ} = 88 mA, 100 - 1000 MHz Broadband Characterization Circuit | Parameter | Test Conditions | Symbol | Min. | Тур. | Max. | Units | |----------------------------------|--|-------------------|-------------------------------|------|-------|-------| | Small Signal Gain | CW, 900 MHz | G _{SS} | - | 15.0 | - | dB | | Gain | CW, P _{OUT} = 41 dBm, 900 MHz | G _P | 12.5 | 14.0 | - | dB | | Saturated Output Power | CW, 900 MHz | P _{SAT} | - | 42.9 | - | dBm | | Drain Efficiency | CW, P _{OUT} = 41 dBm, 900 MHz | η_{D} | 61 | 65 | - | % | | Power Added Efficiency | CW, P _{OUT} = 41 dBm, 900 MHz | PAE | 57.5 | 62.4 | - | % | | Drain Efficiency | CW, 900 MHz | η _{DSAT} | - | 70 | - | % | | Drain Voltage (V _{DS}) | Drain Voltage | V _{DS} | - | 28 | - | V | | Ruggedness | All phase angles | Ψ | VSWR = 15:1, No Device Damage | | amage | | ### DC Electrical Specifications: T_c = 25°C | Parameter | Test Conditions | Symbol | Min. | Тур. | Max. | Units | |------------------------------|--|---------------------|------|------|------|-------| | Drain-Source Leakage Current | V _{GS} = -8 V, V _{DS} = 100 V | I _{DLK} | - | 6 | - | mA | | Gate-Source Leakage Current | V _{GS} = -8 V, V _{DS} = 0 V | I _{GLK} | - | 3 | - | mA | | Gate Threshold Voltage | V _{DS} = 28 V, I _D = 6 mA | V _T | -3.0 | -2.0 | -1.0 | V | | Gate Quiescent Voltage | V _{DS} = 28 V, I _D = 88 mA | V_{GSQ} | -2.7 | -1.8 | -0.9 | V | | On Resistance | V _{DS} = 2 V, I _D = 45 mA | R _{ON} | - | 0.8 | - | Ω | | Saturated Drain Current | V _{DS} = 7 V pulsed, pulse width 300 μs | I _{D(SAT)} | - | 3.5 | - | Α | Rev. V2 # **Absolute Maximum Ratings** 3,4,5,6,7 | Parameter | Absolute Maximum | | | |--|------------------|--|--| | Drain Source Voltage, V _{DS} | 100 V | | | | Gate Source Voltage, V _{GS} | -10 to 3 V | | | | Gate Current, I _G | 12 mA | | | | Storage Temperature Range | -65°C to +150°C | | | | Case Operating Temperature Range | -40°C to +85°C | | | | Channel Operating Temperature Range, T _{CH} | -40°C to +225°C | | | | Absolute Maximum Channel Temperature | +250°C | | | - 3. Exceeding any one or combination of these limits may cause permanent damage to this device. - 4. MACOM does not recommend sustained operation near these survivability limits. - 5. Operating at drain source voltage V_{DS} < 32 V will ensure MTTF > 1 x 10⁷ hours. - 6. Operating at nominal conditions with TCH ≤ 225°C will ensure MTTF > 1 x 10⁷ hours. - 7. MTTF may be estimated by the expression MTTF (hours) = A e [B + C/(T+273)] where T is the channel temperature in degrees Celsius, A = 3.686, B = -35.00, and C = 25,416. ### Thermal Characteristics⁸ | Parameter | Test Conditions | Symbol | Typical | Units | |--------------------|--|-----------------|---------|-------| | Thermal Resistance | V _{DS} = 28 V, T _J = 200°C | Θ _{JC} | 4.6 | °C/W | ^{8.} Junction temperature (T_J) measured using IR Microscopy. Case temperature measured using thermocouple embedded in heat-sink. ### **Handling Procedures** Please observe the following precautions to avoid damage: ### **Static Sensitivity** Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B devices. Rev. V2 # Characterization Circuit and Recommended Tuning Solution 100 - 1000 MHz Broadband ### **Description** Parts measured on the characterization board (20-mil thick RO4350). The PCB's electrical and thermal ground is provided using a standard-plated densely packed via hole array (see recommended via pattern). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page. ### Bias Sequencing Turning the device ON - 1. Set V_{GS} to the pinch-off (V_P) , typically -5 V. - 2. Turn on V_{DS} to nominal voltage (28 V). - 3. Increase V_{GS} until the I_{DS} current is reached. - 4. Apply RF power to desired level. ### Turning the device OFF - 1. Turn the RF power off. - 2. Decrease V_{GS} down to $V_{P.}$ - 3. Decrease V_{DS} down to 0 V. - 4. Turn off V_{GS}. ### Recommended Via Pattern (All dimensions shown as inches) 4 NPA1006A Rev. V2 # **Characterization Circuit and Recommended Tuning Solution** 100 - 1000 MHz Broadband ### **Parts List** | Reference | Value | Tolerance | Manufacturer | Part Number | | |-----------|--|-----------|-----------------------|---------------------|--| | C1 | 10 μF | 20% | TDK | C2012X5R1C106M085AC | | | C2 | 0.01 μF | 10% | AVX | 06031C103JAT2A | | | C3 | 4.7 µF | 10% | TDK | C5750X7R2A475K230KA | | | C4, C6 | 2400 pF | - | Dielectric Labs, Inc. | C08BL242X-5UN-X0 | | | C5 | 4.7 pF | 0.1 pF | Murata | GQM2195C2E4R7BB12 | | | R1 | 49.9 Ω | 1% | Panasonic | ERJ-6ENF49R9V | | | L1 | 0.9 μΗ | 10% | Coilcraft | 1008AF-901XJLC | | | L2 | 5.4 nH | 5% | Coilcraft | 0906-5_LB | | | PCB | Rogers RO4350, e _r =3.5, 0.020" | | | | | | Heat Sink | Copper Heat Sink 3.0" x 2.75" | | | | | Rev. V2 # Typical Performance Measured in the Broadband 100 - 1000 MHz Characterization Circuit: CW, V_{DS} = 28 V, I_{DQ} = 88 mA (unless otherwise noted) ### Deembedded device S-Parameters with R_G = 470 Ω ## #### **Broadband Circuit S-Parameters** ### Performance vs. Frequency at $P_{OUT} = 41 \text{ dBm}$ ### Performance vs. Input Return Loss at $P_{OUT} = 41 \text{ dBm}$ Rev. V2 # Typical Performance Measured in the Broadband 100 - 1000 MHz Characterization Circuit: CW, V_{DS} = 28 V, I_{DQ} = 88 mA (unless otherwise noted) ## Gain vs. Frequency ### Input Return Loss vs. Frequency ### Power Added Efficiency vs. Frequency #### Gain vs. Frequency at P_{IN} = 27 dBm Input Return Loss at P_{IN} = 27 dBm vs. Frequency ### Power Added Efficiency at P_{IN} = 27 dBm vs. Frequency MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. NPA1006A Rev. V2 # Typical Performance Measured in the Broadband 100 - 1000 MHz Characterization Circuit: CW, V_{DS} = 28 V, I_{DQ} = 88 mA (unless otherwise noted) Gain vs. Pout ### Power Added Efficiency vs. Pout ### Input Return Loss vs. Pout Rev. V2 # Typical 2-Tone Performance Measured in the Broadband 100 - 1000 MHz Characterization Circuit: 1 MHz Tone Spacing, V_{DS} = 28 V, I_{DQ} = 88 mA (unless otherwise noted) ### 2-Tone IMD vs. Output Power vs. I_{DQ} #### 2-Tone Gain vs. Output Power vs. IDQ 2-Tone IMD vs. Output Power (1 MHz Tone Spacing, $I_{\rm DQ}$ = 132 mA, F = 450 MHz) 2-Tone IMD vs. Tone Spacing (P_{OUT} = 41 dBm-PEP, I_{DQ} = 132 mA, F = 450 MHz) Rev. V2 ### **Sample Board and Recommended Tuning Solution** 20 - 1000 MHz Broadband Circuit (NPA1006A-SMB) ### **Parts List** | Reference | Value | Tolerance | Manufacturer | Part Number | | |--------------|--|-----------|-----------------------|---------------------|--| | C1 | 10 μF | 20% | TDK | C2012X5R1C106M085AC | | | C2 | 0.01 µF | 10% | AVX | 06031C103JAT2A | | | C3 | 4.7 μF | 10% | TDK | C5750X7R2A475K230KA | | | C4, C6 | 2400 pF | - | Dielectric Labs, Inc. | C08BL242X-5UN-X0 | | | C5 | 4.7 pF | 0.1 pF | Murata | GQM2195C2E4R7BB12 | | | R1 | 470 Ω | 1% | Panasonic | ERJ-3EKF4700V | | | R2 | 0 Ω | - | Panasonic | ERJ-6GEY0R00V | | | L1 | 0.9 μΗ | 10% | Coilcraft | 1008AF-901XJLC | | | L2 | 5.4 nH | 5% | Coilcraft | 0906-5_LB | | | PCB | Rogers RO4350, e _r =3.5, 0.020" | | | | | | Al Heat Sink | Aluminum Heat sink | | | | | Rev. V2 ### Typical Performance Measured in the Broadband 20 - 1000 MHz Sample Board: CW, V_{DS} = 28 V, I_{DQ} = 88 mA (unless otherwise noted) ### Performance vs. Frequency at Pout PSAT ### Performance vs. Frequency at P_{OUT} = 41 dBm ### Performance vs. Output Power (f = 900 MHz) ### Small Signal S-Parameters vs. Frequency Rev. V2 ### Lead-Free 6 x 5 mm 8-Lead PDFN[†] [†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level (MSL) 3 requirements. Plating is NiPdAu. # GaN Amplifier 28 V, 12.5 W 20 - 1000 MHz **NPA1006A** Rev. V2 ### MACOM Technology Solutions Inc. ("MACOM"). All rights reserved. These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights. THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS. MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.