Features
- GaN on Si HEMT D-Mode Amplifier
- Suitable for Linear & Saturated Applications
- Broadband Operation from 20 - 1500 MHz
- 28 V Operation
- 16 dB Gain @ 1 GHz
- 42% PAE @ 1 GHz
- 100% RF Tested
- 50 Ω Input / Output Matched
- Lead-Free 4 mm 16-lead QFN plastic Package
- RoHS* Compliant and 260°C Reflow Compatible

Description
The NPA1003QA is a GaN on silicon power amplifier optimized for 20 - 1500 MHz operation. This amplifier has been designed for saturated and linear operation with output levels to 5 W (37 dBm) assembled in a lead-free 4 mm 16-lead QFN plastic package.

The NPA1003QA is ideally suited for broadband general purpose, test and measurement, defense communications, land mobile radio and wireless infrastructure.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPA1003QA</td>
<td>Bulk</td>
</tr>
<tr>
<td>NPA1003QA-SMBPPR</td>
<td>sample</td>
</tr>
</tbody>
</table>

Functional Schematic

Pin Designations

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Pin Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>2, 3</td>
<td>RF\textsubscript{IN} / VG</td>
<td>RF Input / Gate Voltage</td>
</tr>
<tr>
<td>4 - 9</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>10, 11</td>
<td>RF\textsubscript{OUT} / V\textsubscript{D}</td>
<td>RF Output / Drain Voltage</td>
</tr>
<tr>
<td>12 - 16</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>17</td>
<td>Paddle2</td>
<td>Ground</td>
</tr>
</tbody>
</table>

1. All no connection pins may be left floating or grounded.
2. The exposed pad centered on the package bottom must be connected to RF and DC ground. This path must also provide a low thermal resistance heat path.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.
GaN on Silicon Power Amplifier

20 - 1500 MHz, 28 V, 5 W

RF Electrical Specifications: $T_C = +25^\circ C$, $V_{DS} = 28$ V, $I_{DQ} = 100$ mA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Signal Gain</td>
<td>CW, 1000 MHz</td>
<td>G_{SS}</td>
<td>—</td>
<td>18</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Saturated Output Power</td>
<td>CW, 1000 MHz</td>
<td>P_{SAT}</td>
<td>—</td>
<td>38.5</td>
<td>—</td>
<td>dBm</td>
</tr>
<tr>
<td>Drain Efficiency at Saturation</td>
<td>CW, 1000 MHz</td>
<td>η_{SAT}</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>CW, 1000 MHz</td>
<td>NF</td>
<td>—</td>
<td>2.0</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Power Gain</td>
<td>CW, 1000 MHz, $P_{OUT} = 5$ W</td>
<td>G_P</td>
<td>14</td>
<td>16</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td>Power Added Efficiency</td>
<td>CW, 1000 MHz, $P_{OUT} = 5$ W</td>
<td>PAE</td>
<td>38</td>
<td>42</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td>Ruggedness</td>
<td>All phase angles</td>
<td>Ψ</td>
<td>VSWR=10:1, No Device Damage</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DC Electrical Specifications: $T_C = +25^\circ C$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Leakage Current</td>
<td>$V_{GS} = -8$ V, $V_{DS} = 100$ V</td>
<td>I_{DLK}</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-Source Leakage Current</td>
<td>$V_{GS} = -8$ V, $V_{DS} = 0$ V</td>
<td>I_{GLK}</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>$V_{DS} = 28$ V, $I_{D} = 2$ mA</td>
<td>V_T</td>
<td>-2.5</td>
<td>-1.5</td>
<td>-0.5</td>
<td>V</td>
</tr>
<tr>
<td>Gate Quiescent Voltage</td>
<td>$V_{DS} = 28$ V, $I_{D} = 88$ mA</td>
<td>V_{GSQ}</td>
<td>-2.1</td>
<td>-1.2</td>
<td>-0.3</td>
<td>V</td>
</tr>
<tr>
<td>On Resistance</td>
<td>$V_{DS} = 2$ V, $I_{D} = 15$ mA</td>
<td>R_{ON}</td>
<td>—</td>
<td>1.6</td>
<td>—</td>
<td>Ω</td>
</tr>
<tr>
<td>Maximum Drain Current</td>
<td>$V_{DS} = 7$ V pulsed, pulse width 300 μs</td>
<td>$I_{D, MAX.}$</td>
<td>—</td>
<td>1.5</td>
<td>—</td>
<td>A</td>
</tr>
</tbody>
</table>
GaN on Silicon Power Amplifier
20 - 1500 MHz, 28 V, 5 W

Absolute Maximum Ratings\(^3,4,5\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Source Voltage, (V_{DS})</td>
<td>100 V</td>
</tr>
<tr>
<td>Gate Source Voltage, (V_{GS})</td>
<td>-10 to 3 V</td>
</tr>
<tr>
<td>Gate Current, (I_G)</td>
<td>4 mA</td>
</tr>
<tr>
<td>Junction Temperature, (T_J)</td>
<td>+200°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

3. Exceeding any one or combination of these limits may cause permanent damage to this device.
4. MACOM does not recommend sustained operation near these survivability limits.
5. Operating at nominal conditions with \(T_J \leq 180°C\) will ensure \(MTTF > 1 \times 10^6\) hours.

Thermal Characteristics\(^6\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Typical</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance</td>
<td>(V_{DS} = 28 V, T_J = 180°C)</td>
<td>(R_{\text{JC}})</td>
<td>12</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.
Evaluation Board and Recommended Tuning Solution
20 - 1500 MHz Broadband Circuit

Description
Parts measured on evaluation board (20-mil thick RO4350). The PCB’s electrical and thermal ground is provided using a standard-plated densely packed via hole array (see recommended via pattern).

Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing
Turning the device ON
1. Set V_{GS} to the pinch-off (V_{P}), typically -5 V.
2. Turn on V_{DS} to nominal voltage (28 V).
3. Increase V_{GS} until the I_{DS} current is reached.
4. Apply RF power to desired level.

Turning the device OFF
1. Turn the RF power off.
2. Decrease V_{GS} down to V_{P}.
3. Decrease V_{DS} down to 0 V.

Recommended Via Pattern (All dimensions shown as inches)
Parts list

<table>
<thead>
<tr>
<th>Reference</th>
<th>Value</th>
<th>Tolerance</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>10 µF</td>
<td>20%</td>
<td>TDK</td>
<td>C2012X5R1C106M085AC</td>
</tr>
<tr>
<td>C2</td>
<td>0.01 µF</td>
<td>5%</td>
<td>AVX</td>
<td>06031C103JAT2A</td>
</tr>
<tr>
<td>C3</td>
<td>4.7 µF</td>
<td>10%</td>
<td>TDK</td>
<td>C5750X7R2A475K230KA</td>
</tr>
<tr>
<td>C4, C5</td>
<td>2400 pF</td>
<td>-</td>
<td>Dielectric Labs, Inc.</td>
<td>C08BL242X-5UN-X0</td>
</tr>
<tr>
<td>R1</td>
<td>49.9 Ω</td>
<td>1%</td>
<td>Panasonic</td>
<td>ERJ-6ENF49R9V</td>
</tr>
<tr>
<td>R2</td>
<td>0 Ω</td>
<td>-</td>
<td>Panasonic</td>
<td>ERJ-3GEY0R00V</td>
</tr>
<tr>
<td>L1, L2</td>
<td>0.9 µH</td>
<td>10%</td>
<td>Coilcraft</td>
<td>1008AF-901XJLC</td>
</tr>
<tr>
<td>PCB</td>
<td></td>
<td></td>
<td>Rogers RO4350, εᵣ = 3.5, 0.020"</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation Board and Recommended Tuning Solution

20 - 1500 MHz Broadband Circuit

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
GaN on Silicon Power Amplifier
20 - 1500 MHz, 28 V, 5 W

Typical Performance as measured in the broadband evaluation board:
CW, \(V_{DS} = 28 \, \text{V} \), \(I_{DQ} = 100 \, \text{mA} \) (unless noted)

Small Signal s-Parameters vs. Frequency

Performance vs. Frequency at \(P_{OUT} = 37 \, \text{dBm} \)

Gain vs. Frequency

Power Added Efficiency vs. Frequency

Gain vs. Frequency at \(P_{OUT} = 37 \, \text{dBm} \)

Power Added Efficiency vs. Frequency at \(P_{OUT} = 37 \, \text{dBm} \)
Typical Performance as measured in the broadband evaluation board:

CW, \(V_{DS} = 28 \, \text{V} \), \(I_{DQ} = 100 \, \text{mA} \) (unless noted)

- **Input Return Loss vs. Frequency at** \(P_{OUT} = 37 \, \text{dBm} \)

- **Gain vs. Output Power**

- **Power Added Efficiency vs. Output Power**

For further information and support please visit: https://www.macom.com/support
NPA1003QA

GaN on Silicon Power Amplifier
20 - 1500 MHz, 28 V, 5 W

Typical Performance as measured in the broadband evaluation board:
CW, \(V_{DS} = 28 \text{ V}, \) \(I_{DQ} = 100 \text{ mA} \) (unless noted)

Gain vs. Output Power at freq = 900 MHz

Power Added Efficiency vs. Output Power at freq = 900 MHz

Quiescent \(V_{GS} \) vs. Temperature
GaN on Silicon Power Amplifier
20 - 1500 MHz, 28 V, 5 W

Typical 2-Tone Performance as measured in the broadband evaluation board:
1 MHz Tone Spacing, f = 500 MHz, V_{DS} = 28 V, I_{DQ} = 100 mA (unless noted)

2-Tone IMD3 vs. Output Power vs. Quiescent Current

2-Tone IMD vs. Output Power

2-Tone IMD vs. Tone Spacing at P_{OUT} = 6 W-PEP, I_{DQ}=6 mA
Lead-Free 4 mm QFN 16-lead plastic package

All dimensions shown as inches [mm].

† Meets JEDEC moisture sensitivity level 3 requirements. Plating is 100% matte tin over copper.
GaN on Silicon Power Amplifier
20 - 1500 MHz, 28 V, 5 W

MACOM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

For further information and support please visit: https://www.macom.com/support

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.