Gallium Nitride 28V, 25W RF Power Transistor
Built using the SIGANTIC® NRF1 process - A proprietary GaN-on-Silicon technology

FEATURES
• Optimized for broadband operation from DC-4000MHz
• 25W $P_{3\text{dB}}$ CW power at 3000MHz
• 16-20W $P_{3\text{dB}}$ CW power from 1000-2500MHz in application board with >45% drain efficiency
• 10-20W $P_{3\text{dB}}$ CW power from 30-1000MHz in application board with >50% drain efficiency
• High efficiency from 14 - 28V
• 4.0 °C/W R_{TH} with maximum T_J rating of 200 °C
• Robust up to 10:1 VSWR mismatch at all angles with no device damage at 90 °C flange
• Subject to EAR99 export control

DC – 4000 MHz
25 Watt, 28 Volt
GaN HEMT

RF Specifications (CW, 3000MHz): $V_{DS} = 28V$, $I_{DQ} = 225mA$, $T_C = 25°C$, Measured in Nitronex Test Fixture

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{3\text{dB}}$</td>
<td>Average Output Power at 3dB Gain Compression</td>
<td>43</td>
<td>44</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>$P_{1\text{dB}}$</td>
<td>Average Output Power at 1dB Gain Compression</td>
<td>-</td>
<td>43</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>G_{SS}</td>
<td>Small Signal Gain</td>
<td>12</td>
<td>13</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>η</td>
<td>Drain Efficiency at 3dB Gain Compression</td>
<td>57</td>
<td>65</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>VSWR</td>
<td>10:1 VSWR at all phase angles</td>
<td>No damage to the device</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 - Typical CW Performance in Load-Pull, $V_{DS} = 28V$, $I_{DQ} = 225mA$

Figure 2 - Typical CW Performance1 in Load-Pull, $V_{DS} = 28V$, $I_{DQ} = 225mA$

Note 1: 500MHz and 900MHz Load-Pull data collected using a 4.7 Ω resistor in the RF path added for stability
Absolute Maximum Ratings

Not simultaneous, $T_C = 25^\circ C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DS}</td>
<td>Drain-Source Voltage</td>
<td>100</td>
<td>V</td>
</tr>
<tr>
<td>V_{GS}</td>
<td>Gate-Source Voltage</td>
<td>-10 to 3</td>
<td>V</td>
</tr>
<tr>
<td>I_G</td>
<td>Gate Current</td>
<td>40</td>
<td>mA</td>
</tr>
<tr>
<td>P_T</td>
<td>Total Device Power Dissipation (Derated above 25°C)</td>
<td>44</td>
<td>W</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature Range</td>
<td>-65 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>T_J</td>
<td>Operating Junction Temperature</td>
<td>200</td>
<td>°C</td>
</tr>
<tr>
<td>HBM</td>
<td>Human Body Model ESD Rating (per JESD22-A114)</td>
<td>1B (+/-500V)</td>
<td></td>
</tr>
<tr>
<td>MM</td>
<td>Machine Model ESD Rating (per JESD22-A115)</td>
<td>A (>100V)</td>
<td></td>
</tr>
<tr>
<td>CDM</td>
<td>Charge Device Model ESD Rating (per JESD22-C101)</td>
<td>IV (>1000V)</td>
<td></td>
</tr>
</tbody>
</table>
Table 1: Optimum Source and Load Impedances for CW Gain, Drain Efficiency, and Output Power Performance

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>(V_{DS}) (V)</th>
<th>(Z_S) (Ω)</th>
<th>(Z_L) (Ω)</th>
<th>(P_{SAT}) (W)</th>
<th>(G_{SS}) (dB)</th>
<th>Drain Efficiency @ (P_{SAT}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>14</td>
<td>7.0 + j8.2</td>
<td>8.6 + j7.4</td>
<td>12</td>
<td>27.8</td>
<td>67</td>
</tr>
<tr>
<td>500</td>
<td>22</td>
<td>7.0 + j8.2</td>
<td>9.7 + j11.3</td>
<td>21</td>
<td>29.2</td>
<td>74</td>
</tr>
<tr>
<td>500</td>
<td>28</td>
<td>7.0 + j8.2</td>
<td>9.7 + j14.1</td>
<td>26</td>
<td>29.7</td>
<td>68</td>
</tr>
<tr>
<td>900</td>
<td>14</td>
<td>5.8 + j3.1</td>
<td>6.8 + j4.7</td>
<td>12</td>
<td>22.4</td>
<td>74</td>
</tr>
<tr>
<td>900</td>
<td>22</td>
<td>5.8 + j3.1</td>
<td>9.6 + j5.3</td>
<td>24</td>
<td>23.3</td>
<td>74</td>
</tr>
<tr>
<td>900</td>
<td>28</td>
<td>5.8 + j3.1</td>
<td>9.8 + j7.8</td>
<td>26</td>
<td>23.6</td>
<td>67</td>
</tr>
<tr>
<td>1800</td>
<td>28</td>
<td>3.5 - j3.6</td>
<td>6.9 + j2.0</td>
<td>26</td>
<td>18.4</td>
<td>69</td>
</tr>
<tr>
<td>2500</td>
<td>14</td>
<td>3.9 - j7.5</td>
<td>6.2 - j8.0</td>
<td>13</td>
<td>13.7</td>
<td>70</td>
</tr>
<tr>
<td>2500</td>
<td>22</td>
<td>4.8 - j7.0</td>
<td>5.5 - j4.1</td>
<td>19</td>
<td>14.9</td>
<td>69</td>
</tr>
<tr>
<td>2500</td>
<td>28</td>
<td>4.8 - j7.0</td>
<td>5.5 - j4.1</td>
<td>26</td>
<td>15.2</td>
<td>69</td>
</tr>
<tr>
<td>3000</td>
<td>28</td>
<td>5.3 - j8.8</td>
<td>5.3 - j6.4</td>
<td>26</td>
<td>13.2</td>
<td>66</td>
</tr>
<tr>
<td>3500</td>
<td>28</td>
<td>5.0 - j14.5</td>
<td>7.0 - j9.5</td>
<td>26</td>
<td>12.9</td>
<td>63</td>
</tr>
</tbody>
</table>

Note 1: 500MHz and 900MHz Load-Pull data collected using a 4.7 Ω resistor in the RF path added for stability

Figure 3 - Optimum Impedances for CW Performance, \(V_{DS} = 28V \)

\(Z_S \) is the source impedance presented to the device.
\(Z_L \) is the load impedance presented to the device.
Load-Pull Data, Reference Plane at Device Leads

$V_{DS}=28V$, $I_{DQ}=225mA$, $T_A=25^\circ C$ unless otherwise noted

Figure 4 - Load-Pull Contours¹, 500MHz,
$P_{IN} = 14.5$dBm, $Z_S = 7.0 + j8.2 \, \Omega$

Figure 5 - Load-Pull Contours¹, 900MHz,
$P_{IN} = 21.0$dBm, $Z_S = 5.8 + j3.1 \, \Omega$

Figure 6 - Load-Pull Contours, 1800MHz,
$P_{IN} = 26.5$dBm, $Z_S = 3.5 - j3.6 \, \Omega$

Figure 7 - Load-Pull Contours, 2500MHz,
$P_{IN} = 29.4$dBm, $Z_S = 4.8 - j7.0 \, \Omega$

Note 1: 500MHz and 900MHz Load-Pull data collected using a 4.7 Ω resistor in the RF path added for stability
Load-Pull Data, Reference Plane at Device Leads

$V_{DS}=28V$, $I_{DQ}=225mA$, $T_A=25°C$ unless otherwise noted

Figure 8 - Load-Pull Contours, 3000MHz, $P_{IN}=31.7$ dBm, $Z_S=5.3 - j8.8 \Omega$

Figure 9 - Load-Pull Contours, 3500MHz, $P_{IN}=33.5$ dBm, $Z_S=5.0 - j14.5 \Omega$

Figure 10 - Typical CW Performance in Load-Pull

Figure 11 - Typical CW Performance1 Over Voltage in Load-Pull, 500MHz

Note 1: 500MHz and 900MHz Load-Pull data collected using a 4.7 Ω resistor in the RF path added for stability
Figure 12 - Typical CW Performance Over Voltage in Load-Pull, 900MHz

Figure 13 - Typical CW Performance Over Voltage in Load-Pull, 2500MHz

Figure 14 - Typical CW Performance Over Temperature in Nitronex Test Fixture, 3000MHz

Figure 15 - Quiescent Gate Voltage (V_{GSQ}) Required to Reach I_{DQ} as a Function of Case Temperature, $V_{DS} = 28V$

Figure 16 - MTTF of NRF1 Devices as a Function of Junction Temperature

Figure 17 - Power Derating Curve

Note 1: 500MHz and 900MHz Load-Pull data collected using a 4.7 Ω resistor in the RF path added for stability.
Figure 18 - AC200B-2 Metal-Ceramic Package Dimensions and Pinout (all dimensions are in inches [mm])
Nitronex, LLC
2305 Presidential Drive
Durham, NC 27703 USA
+1.919.807.9100 (telephone)
+1.919.807.9200 (fax)
info@nitronex.com
www.nitronex.com

Additional Information

This part is lead-free and is compliant with the RoHS directive
(Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

Important Notice

Nitronex, LLC reserves the right to make corrections, modifications, enhancements, improvements and other changes to
its products and services at any time and to discontinue any product or service without notice. Customers should obtain
the latest relevant information before placing orders and should verify that such information is current and complete. All
products are sold subject to Nitronex terms and conditions of sale supplied at the time of order acknowledgment. The latest
information from Nitronex can be found either by calling Nitronex at 1-919-807-9100 or visiting our website at

Nitronex warrants performance of its packaged semiconductor or die to the specifications applicable at the time of sale in
accordance with Nitronex standard warranty. Testing and other quality control techniques are used to the extent Nitronex
deems necessary to support the warranty. Except where mandated by government requirements, testing of all parameters
of each product is not necessarily performed.

Nitronex assumes no liability for applications assistance or customer product design. Customers are responsible for their
product and applications using Nitronex semiconductor products or services. To minimize the risks associated with
customer products and applications using Nitronex semiconductor products or services, customers should provide adequate design and operating safeguards.

Nitronex does not warrant or represent that any license, either express or implied, is granted under any Nitronex patent right,
copyright, mask work right, or other Nitronex intellectual property right relating to any combination, machine or process in
which Nitronex products or services are used.

Reproduction of information in Nitronex data sheets is permitted if and only if said reproduction does not alter any of the
information and is accompanied by all associated warranties, conditions, limitations and notices. Any alteration of the
contained information invalidates all warranties and Nitronex is not responsible or liable for any such statements.

Nitronex products are not intended or authorized for use in life support systems, including but not limited to surgical
implants into the body or any other application intended to support or sustain life. Should Buyer purchase or use Nitronex,
LLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold Nitronex, LLC, its
officers, employees, subsidiaries, affiliates, distributors, and its successors harmless against all claims, costs, damages,
and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, notwithstanding if such claim alleges that Nitronex was negligent
regarding the design or manufacture of said products.

Nitronex and the Nitronex logo are registered trademarks of Nitronex, LLC.
All other product or service names are the property of their respective owners.
©Nitronex, LLC 2012. All rights reserved.