Features

- LO 2 TO 24 GHz
- RF 2 TO 24 GHz
- IF 0.1 TO 5 GHz
- LO DRIVE: +10 dBm (NOMINAL)
- HIGH COMPRESSION POINT
- VERY WIDE BANDWIDTH

Description

MY52 is a triple balanced mixer, designed for use in military, commercial and test equipment applications. The design utilizes Schottky ring quad diodes and broadband soft dielectric baluns to attain excellent performance. The use of high temperature solder assembly processes used internally makes it ideal for use in manual, semi-automated assembly. Environmental screening available to MIL-STD-883, MIL-STD-202 or MIL-DTL-28837, consult factory.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MY52</td>
<td>Versapac</td>
</tr>
<tr>
<td>MY52C</td>
<td>SMA Connectorized</td>
</tr>
</tbody>
</table>

Electrical Specifications: $Z_0 = 50\Omega$ Lo = +10 dBm (Downconverter Application only)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Typical</th>
<th>Guaranteed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>+25ºC</td>
<td>-54º to +85ºC</td>
</tr>
</tbody>
</table>
| SSB Conversion Loss (max) & SSB Noise Figure (max) | $f_R = 8$ to 18 GHz, $f_L = 8$ to 18 GHz, $f_I = 0.1$ to 4 GHz
$f_R = 2$ to 8 GHz, $f_L = 2$ to 8 GHz, $f_I = 1$ to 4 GHz
$f_R = 2$ to 18 GHz, $f_L = 2$ to 18 GHz, $f_I = 0.1$ to 5 GHz
$f_R = 18$ to 24 GHz, $f_L = 13$ to 24 GHz, $f_I = 0.1$ to 5 GHz | dB
dB
dB
dB | 7.5
8.0
8.5
9.5
18
25
30
30
1 dB Conversion Comp. | $f_L = +10$ dBm | dBm | 5 | 5 |
| Isolation, L to R (min) | $f_L = 2$ to 24 GHz
$f_L = 4$ to 19 GHz | dB
dB | 18
25
20
20 |
| Isolation, L to I (min) | $f_L = 2$ to 20 GHz
$f_L = 20$ to 24 GHz | dB
dB | 30
20
22
15
20
13 |
| Input IP3 | $R_1 = 3.75$ GHz at -6 dBm, $R_2 = 3.76$ GHz at -6 dBm, $f_L = 4$ GHz at $+10$ dBm
$R_1 = 13$ GHz at -6 dBm, $R_2 = 13.01$ GHz at -6 dBm, $f_L = 11$ GHz at $+10$ dBm
$R_1 = 20$ GHz at -6 dBm, $R_2 = 20.01$ GHz at -6 dBm, $f_L = 24$ GHz at $+10$ dBm | dBm
dBm
dBm
dBm | +16
+16
+13 |
Typical Performance Curves

Conversion Loss vs. Frequency

Drive Level

Isolation vs. Frequency

L-Port VSWR

Conversion Loss vs. Frequency

For further information and support please visit: https://www.macom.com/support
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>-54°C to +100°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +100°C</td>
</tr>
<tr>
<td>Peak Input Power</td>
<td>+26 dBm max @ +25°C</td>
</tr>
<tr>
<td></td>
<td>+22 dBm max @ +100°C</td>
</tr>
<tr>
<td>Peak Input Current</td>
<td>mA DC</td>
</tr>
</tbody>
</table>

* Dimensions are inches (millimeters) ±0.015 (0.38) unless otherwise specified.

Outline Drawing: Versapac

- Weight: 6 grams (0.21 oz.) max

Outline Drawing: SMA Connectorized

- Weight: 12 grams (0.42 oz.) max