Features
- LO 2 TO 24 GHz
- RF 2 TO 24 GHz
- IF 0.1 TO 5 GHz
- LO DRIVE: +10 dBm (NOMINAL)
- HIGH COMPRESSION POINT
- VERY WIDE BANDWIDTH

Description
MY52 is a triple balanced mixer, designed for use in military, commercial and test equipment applications. The design utilizes Schottky ring quad diodes and broadband soft dielectric baluns to attain excellent performance. The use of high temperature solder assembly processes used internally makes it ideal for use in manual, semi-automated assembly. Environmental screening available to MIL-STD-883, MIL-STD-202 or MIL-DTL-28837, consult factory.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MY52</td>
<td>Versapac</td>
</tr>
<tr>
<td>MY52C</td>
<td>SMA Connectorized</td>
</tr>
</tbody>
</table>

Electrical Specifications: $Z_0 = 50\Omega$ $\text{Lo} = +10 \text{ dBm}$ (Downconverter Application only)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Typical</th>
<th>Guaranteed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typical</td>
<td></td>
<td>$+25^\circ\text{C}$</td>
<td>-54°C to $+85^\circ\text{C}$</td>
</tr>
</tbody>
</table>
| SSB Conversion Loss (max) & SSB Noise Figure (max) | $f_R = 8 \text{ to } 18 \text{ GHz}$, $f_L = 8 \text{ to } 18 \text{ GHz}$, $f_I = 0.1 \text{ to } 4 \text{ GHz}$
$ f_R = 2 \text{ to } 8 \text{ GHz}$, $f_L = 2 \text{ to } 8 \text{ GHz}$, $f_I = 1 \text{ to } 4 \text{ GHz}$
$ f_R = 2 \text{ to } 18 \text{ GHz}$, $f_L = 2 \text{ to } 18 \text{ GHz}$, $f_I = 0.1 \text{ to } 5 \text{ GHz}$
$ f_R = 18 \text{ to } 24 \text{ GHz}$, $f_L = 13 \text{ to } 24 \text{ GHz}$, $f_I = 0.1 \text{ to } 5 \text{ GHz}$ | dB | 7.5 | 9.5 | 10.0 |
| | $f_R = 8 \text{ to } 18 \text{ GHz}$, $f_L = 8 \text{ to } 18 \text{ GHz}$, $f_I = 0.1 \text{ to } 4 \text{ GHz}$
$ f_R = 2 \text{ to } 8 \text{ GHz}$, $f_L = 2 \text{ to } 8 \text{ GHz}$, $f_I = 1 \text{ to } 4 \text{ GHz}$
$ f_R = 2 \text{ to } 18 \text{ GHz}$, $f_L = 2 \text{ to } 18 \text{ GHz}$, $f_I = 0.1 \text{ to } 5 \text{ GHz}$
$ f_R = 18 \text{ to } 24 \text{ GHz}$, $f_L = 13 \text{ to } 24 \text{ GHz}$, $f_I = 0.1 \text{ to } 5 \text{ GHz}$ | dB | 8.0 | 10.0 | 10.5 |
| | $f_R = 8 \text{ to } 18 \text{ GHz}$, $f_L = 8 \text{ to } 18 \text{ GHz}$, $f_I = 0.1 \text{ to } 4 \text{ GHz}$
$ f_R = 2 \text{ to } 8 \text{ GHz}$, $f_L = 2 \text{ to } 8 \text{ GHz}$, $f_I = 1 \text{ to } 4 \text{ GHz}$
$ f_R = 2 \text{ to } 18 \text{ GHz}$, $f_L = 2 \text{ to } 18 \text{ GHz}$, $f_I = 0.1 \text{ to } 5 \text{ GHz}$
$ f_R = 18 \text{ to } 24 \text{ GHz}$, $f_L = 13 \text{ to } 24 \text{ GHz}$, $f_I = 0.1 \text{ to } 5 \text{ GHz}$ | dB | 8.5 | 10.5 | 11.0 |
| | $f_R = 8 \text{ to } 18 \text{ GHz}$, $f_L = 8 \text{ to } 18 \text{ GHz}$, $f_I = 0.1 \text{ to } 4 \text{ GHz}$
$ f_R = 2 \text{ to } 8 \text{ GHz}$, $f_L = 2 \text{ to } 8 \text{ GHz}$, $f_I = 1 \text{ to } 4 \text{ GHz}$
$ f_R = 2 \text{ to } 18 \text{ GHz}$, $f_L = 2 \text{ to } 18 \text{ GHz}$, $f_I = 0.1 \text{ to } 5 \text{ GHz}$
$ f_R = 18 \text{ to } 24 \text{ GHz}$, $f_L = 13 \text{ to } 24 \text{ GHz}$, $f_I = 0.1 \text{ to } 5 \text{ GHz}$ | dB | 9.5 | 12.5 | 13.0 |
| Isolation, L to R (min) | $f_L = 2 \text{ to } 24 \text{ GHz}$
$ f_L = 2 \text{ to } 19 \text{ GHz}$ | dB | 18 | 15 | 13 |
| | $f_L = 4 \text{ to } 19 \text{ GHz}$ | dB | 25 | 20 | 18 |
| Isolation, L to I (min) | $f_L = 2 \text{ to } 20 \text{ GHz}$
$ f_L = 20 \text{ to } 24 \text{ GHz}$ | dB | 30 | 22 | 20 |
| | $f_L = 20 \text{ to } 24 \text{ GHz}$ | dB | 20 | 15 | 13 |
| 1 dB Conversion Comp. | $f_L = +10 \text{ dBm}$ | dBm | +5 | |
| Input IP3 | $R_1 = 3.75 \text{ GHz at } -6 \text{ dBm}$, $R_2 = 3.76 \text{ GHz at } -6 \text{ dBm}$, $f_L = 4 \text{ GHz at } +10 \text{ dBm}$
$ R_1 = 13 \text{ GHz at } -6 \text{ dBm}$, $R_2 = 13.01 \text{ GHz at } -6 \text{ dBm}$, $f_L = 11 \text{ GHz at } +10 \text{ dBm}$
$ R_1 = 20 \text{ GHz at } -6 \text{ dBm}$, $R_2 = 20.01 \text{ GHz at } -6 \text{ dBm}$, $f_L = 24 \text{ GHz at } +10 \text{ dBm}$ | dBm | +16 | | |
| | $R_1 = 3.76 \text{ GHz at } -6 \text{ dBm}$, $R_2 = 3.76 \text{ GHz at } -6 \text{ dBm}$, $f_L = 4 \text{ GHz at } +10 \text{ dBm}$
$ R_1 = 13 \text{ GHz at } -6 \text{ dBm}$, $R_2 = 13.01 \text{ GHz at } -6 \text{ dBm}$, $f_L = 11 \text{ GHz at } +10 \text{ dBm}$
$ R_1 = 20 \text{ GHz at } -6 \text{ dBm}$, $R_2 = 20.01 \text{ GHz at } -6 \text{ dBm}$, $f_L = 24 \text{ GHz at } +10 \text{ dBm}$ | dBm | +16 | | |
| | $R_1 = 3.76 \text{ GHz at } -6 \text{ dBm}$, $R_2 = 3.76 \text{ GHz at } -6 \text{ dBm}$, $f_L = 4 \text{ GHz at } +10 \text{ dBm}$
$ R_1 = 13 \text{ GHz at } -6 \text{ dBm}$, $R_2 = 13.01 \text{ GHz at } -6 \text{ dBm}$, $f_L = 11 \text{ GHz at } +10 \text{ dBm}$
$ R_1 = 20 \text{ GHz at } -6 \text{ dBm}$, $R_2 = 20.01 \text{ GHz at } -6 \text{ dBm}$, $f_L = 24 \text{ GHz at } +10 \text{ dBm}$ | dBm | +13 | | |
Typical Performance Curves

Conversion Loss vs. Frequency

- Conversion Loss vs. Frequency
- Isolation vs. Frequency
- Drive Level
- Conversion Loss vs. Frequency

Rev. V3

For further information and support please visit: https://www.macom.com/support

Visit www.macom.com for additional data sheets and product information.
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>-54ºC to +100ºC</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65ºC to +100ºC</td>
</tr>
<tr>
<td>Peak Input Power</td>
<td>+26 dBm max @ +25ºC</td>
</tr>
<tr>
<td></td>
<td>+22 dBm max @ +100ºC</td>
</tr>
<tr>
<td>Peak Input Current</td>
<td>mA DC</td>
</tr>
</tbody>
</table>

Outline Drawing: Versapac *

Outline Drawing: SMA Connectorized *

* Dimensions are inches (millimeters) ±0.015 (0.38) unless otherwise specified.
M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM’s Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppe1s or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

For further information and support please visit:
https://www.macom.com/support