SP2T PIN Diode Switch

Features
- Wide Frequency Range: 50 MHz to 1 GHz
- Surface Mount SP2T Switch in Compact Outline: 8 mm L x 5 mm W x 2.5 mm H
- Higher Average Power Handling than Plastic Packaged MMIC Switches: 150 W CW
- High RF Peak Power: 500 W
- Low Insertion Loss: 0.3 dB
- High IIP3: 60 dBm
- Operates From Positive Voltage Only: 5 V, 28 V to 125 V
- RoHS* Compliant

Description
The MSW2022-202 surface mount silicon PIN diode SP2T switch handles high power signals from 50 MHz to 1 GHz in transmit-receive (TR), active receiver protection and other applications. This switch module is manufactured using a proven hybrid manufacturing process incorporating high voltage PIN diodes and passive devices integrated within a ceramic substrate. These low profile, compact, surface mount components, offer small and large signal performance superior to that of MMIC devices in QFN packages. The SP2T switches are designed in an asymmetrical topology to minimize Tx-Ant loss and maximize Tx-Rx isolation performance. The very low thermal resistance (<25°C/W) of the PIN diodes in these devices enables them to reliably handle RF incident power levels of 52 dBm CW and RF peak incident power levels of 57 dBm in cold switching applications at T_A = 85°C. The I layer thickness of the NIP diodes, coupled with their long minority carrier lifetime, (>0.35 μs), provides input third order intercept point (IIP3) greater than 60 dBm.

This MSW2022-202 SP2T switch is designed to be used in high average and peak power switch applications, operating from 50 MHz to 1 GHz which utilize high volume, surface mount, solder re-flow manufacturing. These products are durable and capable of reliably operating in military, commercial, and industrial environments.

Functional Schematic

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSW2022-202-T</td>
<td>tube</td>
</tr>
<tr>
<td>MSW2022-202-R</td>
<td>250 or 500 piece reel</td>
</tr>
<tr>
<td>MSW2022-202-W</td>
<td>Waffle pack</td>
</tr>
</tbody>
</table>

SP2T PIN Diode Switch

Electrical Specifications: \(T_A = +25^\circ C, P_{IN} = 0 \text{ dBm}, Z_0 = 50 \Omega \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>—</td>
<td>MHz</td>
<td>50</td>
<td>—</td>
<td>1000</td>
</tr>
<tr>
<td>TX-Ant Insertion Loss</td>
<td>Condition 1</td>
<td>dB</td>
<td>—</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Ant-RX Insertion Loss</td>
<td>Condition 2</td>
<td>dB</td>
<td>20</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>TX-Ant Return Loss</td>
<td>Condition 1</td>
<td>dB</td>
<td>20</td>
<td>23</td>
<td>—</td>
</tr>
<tr>
<td>Ant-RX Return Loss</td>
<td>Condition 2</td>
<td>dB</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>TX-RX Isolation</td>
<td>Condition 1</td>
<td>dB</td>
<td>40</td>
<td>45</td>
<td>—</td>
</tr>
<tr>
<td>RX-TX Isolation</td>
<td>Condition 2</td>
<td>dB</td>
<td>20</td>
<td>23</td>
<td>—</td>
</tr>
<tr>
<td>TX CW Incident Power(^1))</td>
<td>Condition 1, 1.5:1 Source & Load VSWR</td>
<td>dBm</td>
<td>—</td>
<td>—</td>
<td>52</td>
</tr>
<tr>
<td>RX CW Incident Power(^1))</td>
<td>Condition 2, 1.5:1 Source & Load VSWR</td>
<td>dBm</td>
<td>—</td>
<td>—</td>
<td>40</td>
</tr>
<tr>
<td>TX Peak Incident Power(^1))</td>
<td>Condition 1, 10 µs Pulse Width, 1% Duty Cycle, 1.5:1 Source & Load VSWR (IL)</td>
<td>dBm</td>
<td>—</td>
<td>—</td>
<td>57</td>
</tr>
<tr>
<td>Switching Time(^2))</td>
<td>10% - 90% RF Voltage</td>
<td>µs</td>
<td>—</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Input IP3</td>
<td>F1 = 500 MHz, F2 = 510 MHz, P1=P2=40 dBm</td>
<td>dBm</td>
<td>60</td>
<td>65</td>
<td>—</td>
</tr>
</tbody>
</table>

Bias State Conditions:

<table>
<thead>
<tr>
<th>Transmit State (TX - ANT in low insertion loss state):</th>
<th>Small Signal Receive State (ANT - RX in low insertion loss state):</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. B1: -150 mA, 0 V</td>
<td>a. B1: 0 mA, 28 V</td>
</tr>
<tr>
<td>c. B3: +20 mA, 28 V</td>
<td>c. B3: -150 mA, 0 V</td>
</tr>
<tr>
<td>d. B4: -20 mA, 0 V</td>
<td>d. B4: 0 mA, 28 V</td>
</tr>
</tbody>
</table>

1. PIN diode DC reverse voltage to maintain high resistance in the OFF PIN diode is determined by RF frequency, incident power, and VSWR as well as by the characteristics of the diode. The minimum reverse bias voltage values are provided in this datasheet. The input signal level applied for small signal testing is approximately 0 dBm.

2. Switching time (50% TTL - 10/90% RF Voltage) is a function of the PIN diode driver performance as well as the characteristics of the diode. An RC “current spiking network” is used on the driver output to provide a transient current to rapidly remove stored charge from the PIN diode. Typical component values are: \(R = 50 \) to \(220 \Omega \) and \(C = 470 \) to \(1,000 \text{ pF} \). MACOMs MPD2T28125-700 is the recommended PIN diode driver to interface with the MSW2010-201 and MSW2022-202 SP2T switches. Its data sheet is available.
Truth Table

<table>
<thead>
<tr>
<th>Port J0 - J1</th>
<th>Port J0 - J2</th>
<th>TX Bias: B1</th>
<th>ANT Bias: B2</th>
<th>RX Bias: B3</th>
<th>DC Bias: B4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Loss</td>
<td>Isolation</td>
<td>0 V, -150 mA</td>
<td>5 V, +150 mA</td>
<td>28 V, 20 V</td>
<td>0 V, -20 mA</td>
</tr>
<tr>
<td>Isolation</td>
<td>Low Loss</td>
<td>28 V, 0 mA</td>
<td>5 V, +150 mA</td>
<td>0 V, -150 mA</td>
<td>28 V, 0 mA</td>
</tr>
</tbody>
</table>

RF Bias Network Component Values

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Inductors</th>
<th>DC Blocking Capacitors</th>
<th>RF Bypass Capacitors</th>
<th>Current Limiting Resistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 - 1000</td>
<td>4.7 µH</td>
<td>0.1 µF</td>
<td>0.1 µF</td>
<td>R1 = 27 Ω, R2 = 1.4 kΩ for 28 V DC Bias</td>
</tr>
</tbody>
</table>

Minimum Reverse Bias Voltage:\(^3\): \(P_{\text{INC}} = 125 \text{ W CW, } Z_0 = 50 \Omega \text{ with 1.5:1 VSWR}\)

<table>
<thead>
<tr>
<th>F = 20 MHz</th>
<th>F = 100 MHz</th>
<th>F = 200 MHz</th>
<th>F = 500 MHz</th>
<th>F = 1000 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 V</td>
<td>125 V</td>
<td>125 V</td>
<td>100 V</td>
<td>85 V</td>
</tr>
</tbody>
</table>

The minimum reverse bias voltage required to maintain a PIN diode out of conduction in the presence of a large RF signal is given by:

\[
|V_{\text{DC}}| = \sqrt{\frac{|V_{\text{RF}}|}{1 + \left(\frac{0.0142 \times f_{\text{MHz}} \times W_{\text{mils}}^2}{V_{\text{RF}}} \times \sqrt{D} \right) \times \left(1 + \frac{0.056 \times V_{\text{RF}} \times \sqrt{D}}{W_{\text{mils}}}\right)^2}}
\]

Where:

- \(|V_{\text{DC}}|\) = magnitude of the minimum DC reverse bias voltage
- \(|V_{\text{RF}}|\) = magnitude of the peak RF voltage (including the effects of the VSWR)
- \(f_{\text{MHz}}\) = lowest RF signal frequency expressed in MHz
- \(D\) = duty factor of the RF signal
- \(W_{\text{mils}}\) = thickness of the diode I layer, expressed in mils (thousands of an inch)

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Current</td>
<td>ANT, TX or RX Port, DC Port</td>
<td>250 mA</td>
</tr>
<tr>
<td></td>
<td>TX or RX Port, DC Port</td>
<td>150 mA</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>TX or RX Port, DC Port</td>
<td>125 V</td>
</tr>
<tr>
<td>Forward Diode Voltage</td>
<td>$I_F = 250$ mA</td>
<td>1.2 V</td>
</tr>
<tr>
<td>CW Incident Power Handling3,4</td>
<td>Source & Load VSWR = 1.5:1, $T_C = 85^\circ$C, cold & hot switching TX or Ant Port RX or Ant Port</td>
<td>52 dBm</td>
</tr>
<tr>
<td></td>
<td>Source & Load VSWR = 1.5:1, $T_C = 85^\circ$C, cold & hot switching, Pulse Width = 10 μs, Duty Cycle = 1%</td>
<td>40 dBm</td>
</tr>
<tr>
<td>Peak Incident Power Handling3,4</td>
<td>Source & Load VSWR = 1.5:1, $T_C = 85^\circ$C, cold & hot switching, Pulse Width = 10 μs, Duty Cycle = 1%</td>
<td>57 dBm</td>
</tr>
<tr>
<td>Total Dissipated RF & DC Power3,4</td>
<td>$T_C = 85^\circ$C, cold switching</td>
<td>3.5 W</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>$T_C = 85^\circ$C, cold switching</td>
<td>$+175^\circ$C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>—</td>
<td>-65°C to $+125^\circ$C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>—</td>
<td>-65°C to $+150^\circ$C</td>
</tr>
<tr>
<td>Assembly Temperature</td>
<td>$t = 10$ s</td>
<td>$+260^\circ$C</td>
</tr>
</tbody>
</table>

3. For hot switching, PIN diode driver must transition from forward bias to reverse bias and reverse bias to forward bias within 100 ns with a parallel RC spiking network at the driver output.
4. Backside RF and DC grounding area of device must be completely solder attached to the RF circuit board vias for proper electrical and thermal circuit grounding.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1C (HBM) devices. The moisture sensitivity level (MSL) rating for this part is MSL 1.

Environmental Capabilities

The MSW2022-202 diode is capable of meeting the environmental requirements of MIL-STD-202 and MIL-STD-750.
SP2T Switch Evaluation Board Schematic

The MSW2022-202 surface mount silicon PIN diode SP2T T-R switch can be controlled using external bias sources to fully exercise the switch for small signal performance analysis and for large signal operation with maximum input signal power of 45 dBm (CW or peak power). The MSW2022-202 SP2T schematic with RF bias network shows the appropriate DC blocking capacitors at each RF port and bias decoupling networks at each RF port and DC bias port of the switch.

Three complementary control signals are required for proper operation. Bias voltages are applied to the TX bias port, RX bias port and the DC bias port to control the state of the switch. A bias voltage of 5 V must be applied to the Ant Bias port whenever the switch is in operation.
SP2T PIN Diode Switch

Transmit State
In the TX state, the series PIN diode between the ANT and TX ports is forward biased by applying 0 V to the TX bias input port (P1-TX). The magnitude of the resultant bias current through the diode is primarily determined by the voltage applied to the ANT bias port (P1- ANT) (nominally 5 V), the magnitude of the forward voltage across the PIN diode and the resistance of R1 (27 Ω). This current is nominally 150 mA. At the same time, the PIN diode connected between RX and DC ports is also forward biased by applying a higher bias voltage, nominally 28 V, to the RX bias port (P1-RX) and 0 V to the DC bias port (P1-DC). Under this condition, the PIN diode connected between the ANT and RX port is reverse biased and the PIN diode connected between the RX and DC ports is forward biased. The magnitude of the bias current through this diode is primarily determined by the voltage applied to the RX bias port, the magnitude of the forward voltage across the PIN diode and the resistance of R2 (1.4 KΩ). This current is nominally 20 mA.

The RX series PIN diode, which is connected between the ANT and RX ports, must be reverse biased during the transmit state. The reverse bias voltage must be sufficiently large to maintain the diode in its non-conducting, high impedance state when large RF signal voltage may be present in the ANT-to-TX path. The reverse voltage across this diode is the arithmetic difference of the bias voltage applied to the RX bias port and the DC forward voltage of the forward-biased transmit series PIN diode.

The minimum voltage required to maintain the series diode on the RX side of the switch out of conduction is a function of the magnitude of the RF voltage present, the standing wave present at the RX series diode’s anode, the frequency of the RF signal and the characteristics of the RX series diode, among other factors. Minimum control voltages for several signal frequencies are shown in the table “Minimum Reverse Bias Voltage”, assuming the input power to the RX or ANT port to be 100 W CW and the VSWR on the ANT-TX path to be 1.5:1. If performance of the switch under larger input signals is to be evaluated, an adequate heat sink must be properly attached to the evaluation board, and several of the passive components must be changed in order to safely handle the dissipated power as well as the high bias voltage necessary for proper performance. Contact the factory for recommended components and heat sink.

Receive State
In the RX state, the series PIN diode between the ANT and RX ports is forward biased by applying 0 V to the RX bias input port (P1-RX). The magnitude of the resultant bias current through the diode is primarily determined by the voltage applied to the ANT bias port (P1-ANT) (nominally 5 V), the magnitude of the forward voltage across the PIN diode and the resistance of R1 (27 Ω). This current is nominally 150 mA. At the same time, the PIN diode connected between RX and DC ports is reverse biased by applying a high bias voltage, nominally 28 V, to the DC bias port (P1-DC). A high voltage, nominally 28 V, is also applied to the TX bias port (P1-TX). Under this condition, the PIN diode connected between the ANT and TX port is reverse biased thus isolating the TX RF port from the RX signal path. The reverse voltage across this diode is the arithmetic difference of the bias voltage applied to the TX bias port and the DC forward voltage of the forward-biased receive series PIN diode. The minimum voltage required to maintain the series diode on the TX side of the switch out of conduction is a function of the magnitude of the RF voltage present, the standing wave present at the RX series diode’s anode, the frequency of the RF signal and the characteristics of the TX series diode, among other factors. For typical receive-level signals, this diode is held out of conduction with a relatively small reverse bias voltage. The values of the reactive components which comprise the bias decoupling networks as well as the signal path DC blocking are shown in the table RF Bias Network Component Values for small signal analysis.
Assembly Instructions

SP2T PIN Diodes may be placed onto circuit boards with pick and place manufacturing equipment from tape and reel. The devices are attached to the circuit using conventional solder re-flow or wave soldering procedures with RoHS type or Sn 60 / Pb 40 type solders.

<table>
<thead>
<tr>
<th>Profile Feature</th>
<th>SnPb Solder Assembly</th>
<th>Pb-Free Solder Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Ramp-Up Rate (T_i to T_f)</td>
<td>3°C /second maximum</td>
<td>3°C /second maximum</td>
</tr>
<tr>
<td>Preheat:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Temperature Min (T_{SMIN})</td>
<td>100°C</td>
<td>150°C</td>
</tr>
<tr>
<td>- Temperature Max (T_{SMAX})</td>
<td>150°C</td>
<td>200°C</td>
</tr>
<tr>
<td>- Time (min to max)/(t_i)</td>
<td>60-120 s</td>
<td>60-180 s</td>
</tr>
<tr>
<td>T_{SMAX} to T_i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Ramp-Up Rate</td>
<td></td>
<td>3°C/s maximum</td>
</tr>
<tr>
<td>Time Maintained Above:</td>
<td>183°C</td>
<td>217°C</td>
</tr>
<tr>
<td>- Temperature (T_f)</td>
<td>60-150 s</td>
<td>60-150 s</td>
</tr>
<tr>
<td>- Time (t_f)</td>
<td>10 – 30 s</td>
<td>20 – 40 s</td>
</tr>
<tr>
<td>Peak temperature (T_p)</td>
<td>225 +0/-5°C</td>
<td>260 +0/-5°C</td>
</tr>
<tr>
<td>Time Within 5°C of Actual Peak Temperature (t_p)</td>
<td>6°C /s maximum</td>
<td>6°C /s maximum</td>
</tr>
<tr>
<td>Ramp-Down Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 25°C to Peak Temperature</td>
<td>6 minutes maximum</td>
<td>8 minutes maximum</td>
</tr>
</tbody>
</table>

Figure 1. Solder Re-Flow Time-Temperature Profile
Outline (CS202)\(^8,9\)

1. SUBSTRATE MATERIAL: 20 MIL THICK ALUMINUM NITRIDE (ALN) RF COVER: BLACK CERAMIC.
2. TOP SIDE AND BACKSIDE METALLIZATION: 40\(\mu\) IN PLATED Au, 60\(\mu\) IN PLATED Ni OVER Ti-Pt-Au.
3. DIMENSION IN PARENTHESIS ARE IN MM.

8. Hatched metal area on circuit side of device is RF, DC and thermal grounded.
9. Vias should be solid copper fill and gold plated for optimum heat transfer from backside of switch module through Circuit Vias to metal thermal ground.