MSS40-xxx-x Series

Medium Barrier Silicon Schottky Diodes

Rev. V1

Features
- \(V_F, R_D \) and \(C_J \) Matching Options
- Chip, Beam Lead and Packaged Devices
- Hi-Rel Screening per MIL-PRF-19500 and MIL-PRF-38534 Available

Description
The MSS40-xxx-x Series of Schottky diodes are fabricated on N-Type epitaxial substrates using proprietary processes that yield the highest FCOs in the industry. Optimum mixer performance is obtained with LO power of 0 dBm to +6 dBm per diode.

Chip
Electrical Specifications: \(T_A = 25^\circ C \)

<table>
<thead>
<tr>
<th>Model</th>
<th>Configuration</th>
<th>(V_F) Typ. V</th>
<th>(V_{BR}) Min. V</th>
<th>(C_J) Typ. / Max. pF</th>
<th>(R_S) Typ. (\Omega)</th>
<th>(R_D) Max. (\Omega)</th>
<th>(F_{CO}) Typ. GHz</th>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSS40-045-C15</td>
<td>Single Junction</td>
<td>0.42</td>
<td>3</td>
<td>0.09 / 0.12</td>
<td>7</td>
<td>15</td>
<td>253</td>
<td>C15</td>
</tr>
<tr>
<td>MSS40-048-C15</td>
<td>Single Junction</td>
<td>0.40</td>
<td>3</td>
<td>0.12 / 0.15</td>
<td>7</td>
<td>15</td>
<td>190</td>
<td>C15</td>
</tr>
<tr>
<td>Test Conditions</td>
<td></td>
<td>(I_F = 1) mA (I_R = 10) (\mu A)</td>
<td>(V_R = 0) V (F = 1) MHz</td>
<td>(I = 5) mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beam Lead
Electrical Specifications: \(T_A = 25^\circ C \)

<table>
<thead>
<tr>
<th>Model</th>
<th>Configuration</th>
<th>(V_F) Typ. V</th>
<th>(V_{BR}) Min. V</th>
<th>(C_J) Typ. / Max. pF</th>
<th>(R_S) Typ. (\Omega)</th>
<th>(R_D) Max. (\Omega)</th>
<th>(F_{CO}) Typ. GHz</th>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSS40-141-B10B</td>
<td>Single Junction</td>
<td>0.42</td>
<td>3</td>
<td>0.06 / 0.10</td>
<td>10</td>
<td>22</td>
<td>265</td>
<td>B10B</td>
</tr>
<tr>
<td>MSS40-148-B10B</td>
<td>Single Junction</td>
<td>0.40</td>
<td>3</td>
<td>0.12 / 0.15</td>
<td>7</td>
<td>17</td>
<td>190</td>
<td>B10B</td>
</tr>
<tr>
<td>MSS40-155-B10B</td>
<td>Single Junction</td>
<td>0.38</td>
<td>3</td>
<td>0.25 / 0.30</td>
<td>5</td>
<td>13</td>
<td>127</td>
<td>B10B</td>
</tr>
<tr>
<td>MSS40-244-B20</td>
<td>Series Tee</td>
<td>0.44</td>
<td>3</td>
<td>0.08 / 0.12</td>
<td>19</td>
<td>22</td>
<td>105</td>
<td>B20</td>
</tr>
<tr>
<td>MSS40-248-B20</td>
<td>Series Tee</td>
<td>0.44</td>
<td>3</td>
<td>0.12 / 0.15</td>
<td>10</td>
<td>17</td>
<td>133</td>
<td>B20</td>
</tr>
<tr>
<td>MSS40-255-B20</td>
<td>Series Tee</td>
<td>0.38</td>
<td>3</td>
<td>0.25 / 0.30</td>
<td>5</td>
<td>15</td>
<td>127</td>
<td>B20</td>
</tr>
<tr>
<td>MSS40-448-B41</td>
<td>Ring Quad</td>
<td>0.40</td>
<td>3</td>
<td>0.12 / 0.15</td>
<td>7</td>
<td>17</td>
<td>190</td>
<td>B41</td>
</tr>
<tr>
<td>MSS40-455-B40</td>
<td>Ring Quad</td>
<td>0.38</td>
<td>3</td>
<td>0.25 / 0.30</td>
<td>5</td>
<td>17</td>
<td>127</td>
<td>B40</td>
</tr>
<tr>
<td>Test Conditions</td>
<td></td>
<td>(I_F = 1) mA (I_R = 10) (\mu A)</td>
<td>(V_R = 0) V (F = 1) MHz</td>
<td>(I = 5) mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued next page)
Packaged

Electrical Specifications: $T_A = 25^\circ C$

<table>
<thead>
<tr>
<th>Model</th>
<th>Configuration</th>
<th>V_F Typ. V</th>
<th>V_{BR} Min. V</th>
<th>C_J Typ. / Max. pF</th>
<th>R_S Typ. Ω</th>
<th>R_D Max. Ω</th>
<th>F_{CO} Typ. GHz</th>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSS40-045-P55</td>
<td>Single Junction</td>
<td>0.42</td>
<td>3</td>
<td>0.21 / 0.27</td>
<td>7</td>
<td>253</td>
<td>P55</td>
<td></td>
</tr>
<tr>
<td>MSS40-045-P86</td>
<td>Single Junction</td>
<td>0.42</td>
<td>3</td>
<td>0.24 / 0.30</td>
<td>7</td>
<td>253</td>
<td>P86</td>
<td></td>
</tr>
<tr>
<td>MSS40-048-P55</td>
<td>Single Junction</td>
<td>0.40</td>
<td>3</td>
<td>0.24 / 0.30</td>
<td>7</td>
<td>190</td>
<td>P55</td>
<td></td>
</tr>
<tr>
<td>MSS40-048-P86</td>
<td>Single Junction</td>
<td>0.40</td>
<td>3</td>
<td>0.27 / 0.33</td>
<td>7</td>
<td>190</td>
<td>P86</td>
<td></td>
</tr>
<tr>
<td>MSS40-141-E25</td>
<td>Single Junction</td>
<td>0.42</td>
<td>3</td>
<td>0.16 / 0.22</td>
<td>10</td>
<td>265</td>
<td>E25</td>
<td></td>
</tr>
<tr>
<td>MSS40-141-H20</td>
<td>Single Junction</td>
<td>0.42</td>
<td>3</td>
<td>0.24 / 0.30</td>
<td>10</td>
<td>265</td>
<td>H20</td>
<td></td>
</tr>
<tr>
<td>MSS40-148-E25</td>
<td>Single Junction</td>
<td>0.40</td>
<td>3</td>
<td>0.22 / 0.28</td>
<td>7</td>
<td>190</td>
<td>E25</td>
<td></td>
</tr>
<tr>
<td>MSS40-148-H20</td>
<td>Single Junction</td>
<td>0.40</td>
<td>3</td>
<td>0.30 / 0.36</td>
<td>7</td>
<td>190</td>
<td>H20</td>
<td></td>
</tr>
<tr>
<td>MSS40-155-E25</td>
<td>Single Junction</td>
<td>0.38</td>
<td>3</td>
<td>0.35 / 0.41</td>
<td>5</td>
<td>127</td>
<td>E25</td>
<td></td>
</tr>
<tr>
<td>MSS40-155-H20</td>
<td>Single Junction</td>
<td>0.38</td>
<td>3</td>
<td>0.43 / 0.50</td>
<td>5</td>
<td>127</td>
<td>H20</td>
<td></td>
</tr>
<tr>
<td>MSS40-244-E35</td>
<td>Series Tee</td>
<td>0.44</td>
<td>3</td>
<td>0.18 / 0.24</td>
<td>19</td>
<td>105</td>
<td>E35</td>
<td></td>
</tr>
<tr>
<td>MSS40-248-E35</td>
<td>Series Tee</td>
<td>0.44</td>
<td>3</td>
<td>0.22 / 0.28</td>
<td>10</td>
<td>133</td>
<td>E35</td>
<td></td>
</tr>
<tr>
<td>MSS40-255-E35</td>
<td>Series Tee</td>
<td>0.38</td>
<td>3</td>
<td>0.35 / 0.41</td>
<td>5</td>
<td>127</td>
<td>E35</td>
<td></td>
</tr>
<tr>
<td>MSS40-448-E45</td>
<td>Ring Quad</td>
<td>0.40</td>
<td>3</td>
<td>0.24 / 0.30</td>
<td>7</td>
<td>190</td>
<td>E45</td>
<td></td>
</tr>
<tr>
<td>MSS40-455-E45</td>
<td>Ring Quad</td>
<td>0.38</td>
<td>3</td>
<td>0.32 / 0.38</td>
<td>5</td>
<td>127</td>
<td>E45</td>
<td></td>
</tr>
<tr>
<td>MSS40-455-H40</td>
<td>Ring Quad</td>
<td>0.38</td>
<td>3</td>
<td>0.42 / 0.48</td>
<td>5</td>
<td>127</td>
<td>H40</td>
<td></td>
</tr>
</tbody>
</table>

Test Conditions

- $I_F = 1\ mA$
- $I_{R} = 10\ \mu A$
- $V_R = 0\ V$
- $F = 1\ MHz$
- $I = 5\ mA$

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Voltage</td>
<td>Rated V_{BR}</td>
</tr>
<tr>
<td>Forward Current</td>
<td>50 mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>100 mW, per junction @ $T_A = 25^\circ C$,</td>
</tr>
<tr>
<td></td>
<td>derate linearly to 0 @ $T_A = +150^\circ C$</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-65$^\circ C$ to +150$^\circ C$</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65$^\circ C$ to +150$^\circ C$</td>
</tr>
<tr>
<td>Soldering Temperature (packaged)</td>
<td>+230$^\circ C$ for 5 seconds</td>
</tr>
<tr>
<td>Beam Lead Pull Strength</td>
<td>4 G minimum</td>
</tr>
</tbody>
</table>

For further information and support please visit:
https://www.macom.com/support
MSS40-xxx-x Series

Medium Barrier Silicon Schottky Diodes

Typical Performance Curves: $T_A = 25^\circ$C

For further information and support please visit:
https://www.macom.com/support
MSS40-xxx-x Series

Medium Barrier Silicon Schottky Diodes

Outline Drawings

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.
Medium Barrier Silicon Schottky Diodes

MSS40-xxx-x Series

MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.