MSS39-xxx-x Series

P-Type Silicon Schottky Diodes

Rev. V1

Features
- Very Low 1/f Noise
- Detector Applications up to 40 GHz
- Chip Beam Lead and Packaged Devices

Description
The MSS39-xxx-x Series of Schottky diodes is fabricated on P-Type epitaxial substrates for superior 1/f noise performance in microwave biased-detector applications up to 40 GHz.

Chip

Electrical Specifications: $T_A = 25^\circ C$

<table>
<thead>
<tr>
<th>Model</th>
<th>V_{BR} Min. V</th>
<th>V_F Typ. V</th>
<th>C_J Max. pF</th>
<th>T_{SS} Ttp. dBm</th>
<th>Y Typ. mV / mW</th>
<th>Frequency Max. GHz</th>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSS39-045-C15</td>
<td>5</td>
<td>0.40</td>
<td>0.10</td>
<td>-58</td>
<td>5,000</td>
<td>18</td>
<td>C15</td>
</tr>
<tr>
<td>MSS39-048-C15</td>
<td>5</td>
<td>0.39</td>
<td>0.15</td>
<td>-58</td>
<td>5,000</td>
<td>12</td>
<td>C15</td>
</tr>
</tbody>
</table>

Test Conditions
- $I_R = 10 \mu A$
- $I_F = 1 mA$
- $V_R = 0 V$, $F = 1 MHz$
- $R_L = 100 K\Omega$, Video BW = 2 MHz
- DC Bias = 10 mA, $F = 10 GHz$

Beam Lead

Electrical Specifications: $T_A = 25^\circ C$

<table>
<thead>
<tr>
<th>Model</th>
<th>V_{BR} Min. V</th>
<th>V_F Typ. V</th>
<th>C_J Max. pF</th>
<th>T_{SS} Ttp. dBm</th>
<th>Y Typ. mV / mW</th>
<th>Frequency Max. GHz</th>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSS39-144-B10B</td>
<td>3.5</td>
<td>0.38</td>
<td>0.08</td>
<td>-58</td>
<td>5,000</td>
<td>40</td>
<td>B10B</td>
</tr>
<tr>
<td>MSS39-146-B10B</td>
<td>3.5</td>
<td>0.38</td>
<td>0.10</td>
<td>-58</td>
<td>5,000</td>
<td>26</td>
<td>B10B</td>
</tr>
<tr>
<td>MSS39-148-B10B</td>
<td>3.5</td>
<td>0.39</td>
<td>0.12</td>
<td>-58</td>
<td>5,000</td>
<td>18</td>
<td>B10B</td>
</tr>
<tr>
<td>MSS39-152-B10B</td>
<td>3.5</td>
<td>0.38</td>
<td>0.18</td>
<td>-58</td>
<td>5,000</td>
<td>12</td>
<td>B10B</td>
</tr>
</tbody>
</table>

Test Conditions
- $I_R = 10 \mu A$
- $I_F = 1 mA$
- $V_R = 0 V$, $F = 1 MHz$
- $R_L = 100 K\Omega$, Video BW = 2 MHz
- DC Bias = 10 mA, $F = 10 GHz$

(Continued next page)
Packaged

Electrical Specifications: $T_A = 25^\circ C$

<table>
<thead>
<tr>
<th>Model</th>
<th>V_{BR} Min. V</th>
<th>V_F Typ. V</th>
<th>C_J Max. pF</th>
<th>T_{SS} Tp. dBm</th>
<th>γ Typ. mV/mW</th>
<th>Frequency Max. GHz</th>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSS39-045-P55</td>
<td>5.0</td>
<td>0.40</td>
<td>0.25</td>
<td>-58</td>
<td>5000</td>
<td>18</td>
<td>P55</td>
</tr>
<tr>
<td>MSS39-045-P86</td>
<td>5.0</td>
<td>0.40</td>
<td>0.27</td>
<td>-58</td>
<td>5000</td>
<td>18</td>
<td>P86</td>
</tr>
<tr>
<td>MSS39-048-P55</td>
<td>5.0</td>
<td>0.39</td>
<td>0.30</td>
<td>-58</td>
<td>5000</td>
<td>12</td>
<td>P55</td>
</tr>
<tr>
<td>MSS39-048-P86</td>
<td>5.0</td>
<td>0.39</td>
<td>0.32</td>
<td>-58</td>
<td>5000</td>
<td>12</td>
<td>P86</td>
</tr>
<tr>
<td>MSS39-148-E25</td>
<td>3.5</td>
<td>0.39</td>
<td>0.22</td>
<td>-58</td>
<td>5000</td>
<td>18</td>
<td>E25</td>
</tr>
<tr>
<td>MSS39-148-H20</td>
<td>3.5</td>
<td>0.39</td>
<td>0.30</td>
<td>-58</td>
<td>5000</td>
<td>12</td>
<td>H20</td>
</tr>
<tr>
<td>MSS39-152-E25</td>
<td>3.5</td>
<td>0.38</td>
<td>0.28</td>
<td>-58</td>
<td>5000</td>
<td>12</td>
<td>E25</td>
</tr>
<tr>
<td>MSS39-152-H20</td>
<td>3.5</td>
<td>0.38</td>
<td>0.36</td>
<td>-58</td>
<td>5000</td>
<td>18</td>
<td>H20</td>
</tr>
</tbody>
</table>

Test Conditions: $I_R = 10 \, \mu A$, $I_F = 1 \, mA$, $V_{BR} = 0 \, V$, $F = 1 \, MHz$, DC Bias = 10 mA, $F = 10 \, GHz$, $R_L = 100 \, K\Omega$, Video BW = 2 MHz

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Voltage</td>
<td>1 V</td>
</tr>
<tr>
<td>Forward Current</td>
<td>50 mA</td>
</tr>
<tr>
<td>CW Power Dissipation</td>
<td>100 mW, derated linearly to 0 @ $T_A = +150^\circ C$</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Soldering Temperature (packaged)</td>
<td>+230°C for 5 seconds</td>
</tr>
</tbody>
</table>
MSS39-xxx-x Series

P-Type Silicon Schottky Diodes

Typical Performance Curves: $T_A = 25^\circ C$
MSS39-xxx-x Series

P-Type Silicon Schottky Diodes

Outline Drawings

C15

Top contact is cathode

12.4 [315]
13 [330]

Top Contact
1 [0.026]
0.3 [0.039]

Black Contact

0.01 [0.0004]
0.005 [0.0002]

17 [432]
13 [332]

Example

B10B

Cut lead is anode

12 [0.48]
6 [0.24]

10 [0.4]

Example

P55 (hermetic)

Ceramic Body

55 [1.397]

51 [1.296] Dia.

Heatsink is anode

P86 (hermetic)

Ceramic Body

66 [1.676]

50 [1.27] Dia.

Heatsink is anode

E25 (non-hermetic)

Cut lead is Cathode

18 [0.457]

12 [0.306]

Epoxy

5 [0.127] 2Pins

3 [0.078]

50 [1.27] Max.

14 [0.356]

8 [0.203]

Ceramic

80 [2.032] Min.

H20 (hermetic)

Cut lead is Cathode

102 [2.59] Dia

81 [2.067]

23 [0.584]

17 [0.432]

104 [2.647]

92 [2.337] Square

35 [0.889]

25 [0.635]

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.