Features

- Phase Locking to 22 GHz
- Phase Locks DRO’s and VCO’s
- Fully Integrated Module
- Broadband Capability

Description

The sampling phase detector (SPD) module is a hybrid circuit providing a fast step recovery diode, coupling capacitors and a low barrier Schottky pair. The Schottky pair is used as a sampling circuit turned on by the fast step from the step recovery diode (SRD), or in the frequency domain, the Schottky acts as a mixer to mix the harmonic of the SRD step closest to the microwave frequency. The output is a beat frequency (the difference between the harmonic of the reference and the microwave frequency) and is just a DC voltage at the lock point. It is used to phase lock DRO’s and VCO’s from 10 to 1000 MHz typical reference frequencies.

Functional Schematic & Pinouts

Electrical Specification: $T_A = +25^\circ C$

<table>
<thead>
<tr>
<th>Part #</th>
<th>Cap.</th>
<th>Microwave Frequency</th>
<th>Step Recovery Diode</th>
<th>Schottky Sampling Diodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Power Drive Range</td>
<td>F_{REF}</td>
<td>P_{REF}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. Min. Range</td>
<td>pF</td>
<td>dBm</td>
</tr>
<tr>
<td>MSPD1000-x</td>
<td>18 - 22</td>
<td>7</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>MSPD1002-x</td>
<td>3.0 - 4.1</td>
<td>7</td>
<td>2.5</td>
<td>25</td>
</tr>
<tr>
<td>MSPD1012-x</td>
<td>2.0 - 3.1</td>
<td>6</td>
<td>12.5</td>
<td>50</td>
</tr>
<tr>
<td>MSPD2018-x</td>
<td>0.45 - 0.70</td>
<td>4</td>
<td>22.0</td>
<td>100</td>
</tr>
</tbody>
</table>

1. Parts available in surface mount packages E50, E50SM, and H50. When ordering add the dash variant to the part number.
Sampling Phase Detector Modules

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Soldering Temperature</td>
<td>+230°C for 5 seconds</td>
</tr>
</tbody>
</table>

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Typical Performance (MSPD1012-E50)

Recommended Circuit

A Typical Circuit Application

2. All circuits have broadband capability and are not limited to the frequencies stated.
Applications

The Sampling Phase Detector (SPD) is composed of a comb generator, a coupling network and a single balanced mixer. It is designed to be used in phase locking circuits for microwave oscillators. The following description of the operation of the SPD refers to Fig. 1. The step recovery diode (SRD) D1 charges during the forward bias part of the AC cycle. The charge is withdrawn during the reverse bias part of the AC cycle, and D1 transitions, producing an edge. The capacitors C1 and C2 differentiate the edge into an impulse and apply a sample of the microwave signal to the IF filter. When the reference signal and the microwave signal are harmonically related, the same voltage point on the microwave signal is applied to the IF filter, producing a steady DC output or offset voltage. When the two signals are not exactly related, a different point on the microwave signal is applied to the IF filter each cycle, producing a sine wave with a frequency that is equal to the difference between the microwave signal’s frequency and the frequency of the closest harmonic of the reference signal. This frequency is also defined as the difference frequency.

The design criteria for the circuit, shown in Fig. 2, is described below. Transformer T1 matches the reference oscillator to the SRD and converts the oscillator’s signal from single ended to balanced. The SPD requires 17 dBm to 27 dBm from the reference oscillator to work properly. The SRD impedance, which is about 50 ohms at 17 dBm, decreases as the drive level is increased. R1 and R2, each of which should be about 50 ohms, provide a termination for the microwave signal and dampen reflections in the SPD caused by mismatches. C1 isolates the IF signal from the microwave source. Its value should be chosen so it has a high impedance (at least 150 ohms) at the IF frequency and a low impedance (<10 ohms) at the microwave frequency.

C1 can be replaced by a high pass or band pass filter network. The circuit’s performance can be improved by matching the microwave source to the Schottky diodes. Also use microwave layout rules for the physical layout of the interface circuit between the microwave source and the Schottky. R3 and C2 create a low pass filter which separates out the IF signal. The cut off frequency of this filter should be selected to block the next higher harmonic of the reference oscillator. For example, the harmonics of a 100 MHz reference occur every 100 MHz, the cut off frequency must be less then 100 MHz. R3 may be replaced by an inductor of an appropriate value. Care must be taken not to shunt the microwave signal away from the Schottky with a low quality inductor. R4, R5 and R6 provide the return path for the IF signal. R4 provides a DC offset adjustment. R5 and R6 should have a value of at least 100 ohms and be placed as close to the SPD as possible. R5 and R6 keep the impulse and microwave signal inside the SPD. Fig. 3 shows an alternative IF return network with R4 removed. The resistors R5 and R6 can be replaced with low pass filters. The low pass filters need to present a high impedance (Z > 200 Ω) to the SPD to keep from loading down the impulse and microwave signal.
There are four models of the SPD, each one is designed to work at a particular microwave frequency. This maximum frequency is not a cut off frequency; but, it is a suggested upper limit based on the Schottky junction capacitance. For the MSPD0002 and MSPD1000, the transition time of the SRD will limit the upper frequency to 4 GHz. The circuit in Fig. 2 is designed to work with a sine wave driving the SRD. The SRD can be driven with a square wave or a pulse. For low frequency (<20 MHz) references, a pulse drive will work better than sine wave drive. The minimum requirements is a forward bias cycle of at least 10 ns and a reverse bias cycle long enough to remove all the stored charge and allow the SRD to transition. The reverse bias cycle should have a fall time less then 0.8 ns. The maximum current in either direction should be 10 mA and the maximum reverse voltage should be 13 V. The greater the reverse voltage, the greater the impulse generated. One way to achieve pulse drive is shown in Fig. 4. The circuit uses a constant current source to supply the forward bias. Then a pulse is superimposed to reverse bias the SRD. R is a minimum of 1000 ohms and C is 0.02 µF. The forward voltage drop of the SRD is about 1 V and varies about -2 mV/°C.

One property of the SPD is that the conversion efficiency varies approximately as \(\sin \left(npx \right) / \left(npx \right) \). This is due to the impulse driving the Schottky. Minimum conversion efficiency occurs when \(\left(npx \right) = N \) where n and N are integers. The value of X is controlled by the reference frequency and the value of the coupling capacitors. When testing a new design, adjusting the microwave frequency is recommended to insure the circuit is not at a minimum. If the circuit is at a minimum and the reference frequency cannot be changed, the coupling capacitance can be raised by adding external capacitors.

There are several ways to connect a single balanced mixer. The circuit in Fig. 2 is based on the circuit shown in Fig. 5. Fig. 6 shows another possibility. When used as a sampling mixer, the SPD has a high conversion loss (example: \(F_{ref} = 100 \) MHz, \(F_{microwave} = 1 \) GHz and \(F_{IF} = 1 \) KHz, Conversion Loss = 25 dB).

Fig. 7 shows how IF output varies with microwave power at various reference drive levels. For each reference drive level there is an optimum microwave input level. Excessive microwave input increases phase noise, temperature drift and decreases IF output.

One property of the SPD is that the conversion efficiency varies approximately as \(\sin \left(npx \right) / \left(npx \right) \). This is due to the impulse driving the Schottky. Minimum conversion efficiency occurs when \(\left(npx \right) = N \) where n and N are integers. The value of X is controlled by the reference frequency and the value of the coupling capacitors. When testing a new design, adjusting the microwave frequency is recommended to insur...
MSPDxxxx-x Series

Sampling Phase Detector Modules

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Sampling Phase Detector Modules

Outline Drawing (E50)

Cp=0.07pF
Lp=0.4nH

Dimensions in mils [mm]
Outline Drawing (E50SM)

Dimensions in mils [mm]

Cp=0.07pF

22 [0.559]
18 [0.457]

95 [2.413]
35 [0.889]
25 [0.635]

80 [2.032]
70 [1.778]

23 [0.584] 5 PIs
17 [0.432]

55 [1.397] 5PIs
45 [1.143]

Epoxy

Ceramic

2 [0.051]
1 [0.025]

6 [0.152] 5PIs
3 [0.076]

28 [0.711]
22 [0.559]
MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.