MRF454

The RF Line NPN Silicon Power Transistor
80W, 30MHz, 12.5V

Designed for power amplifier applications in industrial, commercial and amateur radio equipment to 30 MHz.

- Specified 12.5 V, 30 MHz characteristics
- Output power = 80 W
- Minimum gain = 12 dB
- Efficiency = 50%

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-Emitter Voltage</td>
<td>V_{CEO}</td>
<td>25</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector-Base Voltage</td>
<td>V_{CBO}</td>
<td>45</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter-Base Voltage</td>
<td>V_{EBO}</td>
<td>4.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Current — Continuous</td>
<td>I_C</td>
<td>20</td>
<td>Adc</td>
</tr>
<tr>
<td>Total Device Dissipation @ $T_C = 25^\circ C$</td>
<td>P_D</td>
<td>250</td>
<td>Watts</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td>1.43</td>
<td>W/°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{stg}</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>R_{AJC}</td>
<td>0.7</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ C$ unless otherwise noted)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
</table>

OFF CHARACTERISTICS

- Collector-Emitter Breakdown Voltage ($I_C = 100 \text{ mAdc}, I_B = 0$) | $V_{BR,CEO}$ | 18 | — | — | Vdc |
- Collector-Emitter Breakdown Voltage ($I_C = 50 \text{ mAdc}, V_{BE} = 0$) | $V_{BR,CES}$ | 36 | — | — | Vdc |
- Emitter–Base Breakdown Voltage ($I_E = 10 \text{ mAdc}, I_C = 0$) | $V_{BR,EBO}$ | 4.0 | — | — | Vdc |

ON CHARACTERISTICS

- DC Current Gain ($I_C = 5.0 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc}$) | h_{FE} | 40 | — | 150 | — |

DYNAMIC CHARACTERISTICS

- Output Capacitance ($V_{CB} = 15 \text{ Vdc}, I_B = 0, f = 1.0 MHz$) | C_{oD} | — | — | 250 | pF |
The RF Line NPN Silicon Power Transistor

80W, 30MHz, 12.5V

<table>
<thead>
<tr>
<th>Functional Tests (Figure 1)</th>
<th>G_{pc}</th>
<th>12</th>
<th>—</th>
<th>—</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common-Emitter Amplifier Power Gain ($V_{CC} = 12.5$ Vdc, $P_{out} = 80$ W, $f = 30$ MHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector Efficiency ($V_{CC} = 12.5$ Vdc, $P_{out} = 80$ W, $f = 30$ MHz)</td>
<td>η</td>
<td>50</td>
<td>—</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td>Series Equivalent Input Impedance ($V_{CC} = 12.5$ Vdc, $P_{out} = 80$ W, $f = 30$ MHz)</td>
<td>Z_{in}</td>
<td></td>
<td>0.938-j3.41</td>
<td>—</td>
<td>Ohms</td>
</tr>
<tr>
<td>Series Equivalent Output Impedance ($V_{CC} = 12.5$ Vdc, $P_{out} = 80$ W, $f = 30$ MHz)</td>
<td>Z_{out}</td>
<td></td>
<td>1.16-j2.01</td>
<td>—</td>
<td>Ohms</td>
</tr>
<tr>
<td>Parallel Equivalent Input Impedance ($V_{CC} = 12.5$ Vdc, $P_{out} = 80$ W, $f = 30$ MHz)</td>
<td></td>
<td></td>
<td>1.06 Ω</td>
<td>1817 pF</td>
<td>—</td>
</tr>
<tr>
<td>Parallel Equivalent Output Impedance ($V_{CC} = 12.5$ Vdc, $P_{out} = 80$ W, $f = 30$ MHz)</td>
<td></td>
<td></td>
<td>1.19 Ω</td>
<td>777 pF</td>
<td>—</td>
</tr>
</tbody>
</table>

Figure 1. 30 MHz Test Circuit Schematic

Figure 1. 30 MHz Test Circuit Schematic

- **C1, C2, C4** — ARCO 489
- **C3** — ARCO 466
- **C5** — 1000 pF, UNELCO
- **C6, C7** — 0.1 µF Disc Ceramic
- **C8** — 1000 µF/15 V Electrolytic
- **R1** — 10 Ohm 1/4 Watt, Carbon
- **L1** — 3 Turns, #18 AWG, 5/16“ I.D., 5/16“ Long
- **L2** — VK200-20/4B, FERROXCUBE
- **L3** — 12 Turns, #18 AWG Enamelled Wire, 1/4“ I.D., Close Wound
- **L4** — 3 Turns 1/8“ O.D. Copper Tubing, 3/8“ I.D., 3/4“ Long
- **L5** — 7 FERRITE Beads, FERROXCUBE #56-590-65/38
The RF Line NPN Silicon Power Transistor

80W, 30MHz, 12.5V

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Supply Voltage
MRF454

The RF Line NPN Silicon Power Transistor
80W, 30MHz, 12.5V

Rev. V1

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support

Unless otherwise noted, tolerances are inches ±0.005” (millimeters ±0.13mm)
The RF Line NPN Silicon Power Transistor
80W, 30MHz, 12.5V

M/A-COM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.