The RF Line NPN Silicon Power Transistor
250 W, 30 MHz, 50 V
Rev. V1

Description
Designed primarily for high voltage applications as a high power linear amplifiers from 2 to 30 MHz. Ideal for marine and base station equipment.

- Specified 50 V, 30 MHz characteristics
 - Output power = 250 W
 - Minimum gain = 12 dB
 - Efficiency = 45%
- Intermodulation distortion @ 250 W (PEP) - IMD = -30 dB (max.)
- 100% tested for load mismatch at all phase angles with 3:1 VSWR

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-Emitter Voltage</td>
<td>(V_{CEO})</td>
<td>50</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector-Base Voltage</td>
<td>(V_{CBO})</td>
<td>100</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter-Base Voltage</td>
<td>(V_{EBO})</td>
<td>4</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Current - Continuous</td>
<td>(I_C)</td>
<td>16</td>
<td>Adc</td>
</tr>
<tr>
<td>Withstand Current - 10 s</td>
<td></td>
<td>20</td>
<td>Adc</td>
</tr>
<tr>
<td>Total Device Dissipation @ Tc =25°C</td>
<td>(P_D)</td>
<td>290</td>
<td>Watts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.67</td>
<td>W/°C</td>
</tr>
</tbody>
</table>

Storage Temperature Range

| T_{stg} | -65 to +150 °C |

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>(R_{ejc})</td>
<td>0.6</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-Emitter Breakdown Voltage ((I_C = 200) mAdc, (I_E = 0))</td>
<td>(V_{(BR)CEO})</td>
<td>50</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector-Emitter Breakdown Voltage ((I_C = 100) mAdc, (V_{BE} = 0))</td>
<td>(V_{(BR)CES})</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector-Base Breakdown Voltage ((I_C = 100) mAdc, (I_E = 0))</td>
<td>(V_{(BR)CBO})</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter-Base Breakdown Voltage ((I_E = 10) mAdc, (I_C = 0))</td>
<td>(V_{(BR)EBO})</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
</tbody>
</table>

Note:
1. PD is a measurement reflecting short term maximum condition. See SOAR curve for operating conditions.
ELECTRICAL CHARACTERISTICS - continued \((T_C = 25^\circ C \text{ unless otherwise noted}) \)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Current Gain ((I_C = 5.0 \text{ Adc, } V_{CE} = 10 \text{ Vdc}))</td>
<td>(h_{FE})</td>
<td>25</td>
<td>—</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>DYNAMIC CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Capacitance ((V_{CB} = 50 \text{ Vdc, } I_C = 0, \ f = 1.0 \text{ MHz}))</td>
<td>(C_{ob})</td>
<td>—</td>
<td>350</td>
<td>450</td>
<td>pF</td>
</tr>
<tr>
<td>FUNCTIONAL TESTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common-Emitter Amplifier Power Gain ((V_{CC} = 50 \text{ Vdc, } P_{out} = 250 \text{ W CW, } f = 30 \text{ MHz, } I_{CQ} = 250 \text{ mA}))</td>
<td>(G_{PE})</td>
<td>12</td>
<td>14</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Collector Efficiency ((V_{CC} = 50 \text{ Vdc, } P_{out} = 250 \text{ W, } f = 30 \text{ MHz, } I_{CQ} = 250 \text{ mA}))</td>
<td>(\eta)</td>
<td>—</td>
<td>45</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Intermodulation Distortion (2) ((V_{CE} = 50 \text{ Vdc, } P_{out} = 250 \text{ W (PEP), } I_{CQ} = 250m\text{A, } f = 30 \text{ MHz}))</td>
<td>(\text{IMD})</td>
<td>—</td>
<td>-33</td>
<td>-30</td>
<td>dB</td>
</tr>
<tr>
<td>Electrical Ruggedness ((V_{CC} = 50 \text{ Vdc, } P_{out} = 250 \text{ W CW, } f =30 \text{ MHz, } \text{VSWR 3:1 at all Phases Angles}))</td>
<td>(\Psi)</td>
<td>No Degradation in Output Power</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
2. To Mil–Std-1311 Version A, Test Method 2204, Two Tone, Reference Each Tone
MRF448A

The RF Line NPN Silicon Power Transistor
250 W, 30 MHz, 50 V

C1, C2, C5, C7 — 170–780 pF, Arco 469
C3, C6, C9 — 0.1 µF, 100 V Elna
C4 — 500 µF @ 6.0 V
C6 — 360 pF, 3 x 120 pF 3.0 kV in parallel
C10 — 10 µF, 100 V
R1 — 10 Ω, 10 Watt
R2 — 10 Ω, 1.0 Watt

CR1 — 1N4997 or equivalent
L1 — 3 Turns, #16 Wire, 0.4" I.D., 0.3" Long
L2 — 0.8 µH, Ohmite Z-235 or equivalent
L3 — 12 Turns, #16 Enamelled Wire Closewound 0.25" I.D.
L4 — 4 Turns, 1/8" Copper Tubing, 0.6" I.D., 1.0" Long
L5, L6 — 2.0 µH, Fas-Rite 2643021881 Ferrite bead each or equivalent

Figure 1. 30 MHz Test Circuit Schematic
MRF448A

The RF Line NPN Silicon Power Transistor
250 W, 30 MHz, 50 V

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Supply Voltage

Figure 4. Power Gain versus Frequency

Figure 5. RF SOAR (Class AB) P_{out} versus Output VSWR

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support

DC-0017303
MRF448A

The RF Line NPN Silicon Power Transistor
250 W, 30 MHz, 50 V

Figure 6. fT versus Collector Current

Figure 7. IMD versus Pout
The RF Line NPN Silicon Power Transistor
250 W, 30 MHz, 50 V

Figure 8. Output Resistance and Capacitance versus Frequency

Figure 9. Series Equivalent Impedance
The RF Line NPN Silicon Power Transistor
250 W, 30 MHz, 50 V

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
The RF Line NPN Silicon Power Transistor
250 W, 30 MHz, 50 V

MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc (“MACOM”) products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

For further information and support please visit:
https://www.macom.com/support

Visit www.macom.com for additional data sheets and product information.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.