The RF Line NPN Silicon Power Transistor
250W, 30MHz, 50V

Designed primarily for high-voltage applications as a high-power linear amplifiers from 2.0 to 30 MHz. Ideal for marine and base station equipment.

- Specified 50 V, 30 MHz characteristics
 - Output power = 250 W
 - Minimum gain = 12 dB
 - Efficiency = 45%
- Intermodulation distortion @ 250 W (PEP) —
 - IMD = –30 dB (max)
- 100% tested for load mismatch at all phase angles with 3:1 VSWR

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Voltage</td>
<td>V_CEO</td>
<td>50</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Voltage</td>
<td>V_CBO</td>
<td>100</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Voltage</td>
<td>V_EBO</td>
<td>4.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Current — Continuous</td>
<td>I_C</td>
<td>16</td>
<td>Adc</td>
</tr>
<tr>
<td>Withstand Current — 10 s</td>
<td>—</td>
<td>20</td>
<td>Adc</td>
</tr>
<tr>
<td>Total Device Dissipation @ T_C = 25°C (1)</td>
<td>P_D</td>
<td>250</td>
<td>Watts</td>
</tr>
<tr>
<td>(Derate above 25°C)</td>
<td></td>
<td>1.67</td>
<td>W/°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_stb</td>
<td>–65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>R_EJC</td>
<td>0.6</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Breakdown Voltage (I_C = 200 mA dc, I_E = 0)</td>
<td>V_BR/CEO</td>
<td>50</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Emitter Breakdown Voltage (I_C = 100 mA dc, V_BB = 0)</td>
<td>V_BR/CES</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Breakdown Voltage (I_C = 100 mA dc, I_E = 0)</td>
<td>V_BR/CBO</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Breakdown Voltage (I_E = 10 mA dc, I_C = 0)</td>
<td>V_BR/EBO</td>
<td>4.0</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
</tbody>
</table>

NOTE:
1. P_D is a measurement reflecting short term maximum condition. See SOAR curve for operating conditions.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
MRF448

The RF Line NPN Silicon Power Transistor

250W, 30MHz, 50V

ELECTRICAL CHARACTERISTICS — continued

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Current Gain</td>
<td>h_{FE}</td>
<td>10</td>
<td>30</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_{ob}</td>
<td>—</td>
<td>350</td>
<td>450</td>
<td>pF</td>
</tr>
</tbody>
</table>

ON CHARACTERISTICS

- DC Current Gain: $I_C = 5.0\, \text{A}, V_{CE} = 10\, \text{Vdc}$
- Output Capacitance: $V_{CB} = 50\, \text{Vdc}, I_C = 0, f = 1.0\, \text{MHz}$

DYNAMIC CHARACTERISTICS

FUNCTIONAL TESTS

- Common-Emitter Amplifier Power Gain: $V_{CC} = 50\, \text{Vdc}, P_{out} = 250\, \text{W CW}, f = 30\, \text{MHz}, I_{CO} = 250\, \text{mA}$
- Collector Efficiency: $V_{CC} = 50\, \text{Vdc}, P_{out} = 250\, \text{W}, f = 30\, \text{MHz}, I_{CO} = 250\, \text{mA}$
- Intermodulation Distortion (2): $V_{CE} = 50\, \text{Vdc}, P_{out} = 250\, \text{W (PEP)}, I_{CO} = 250\, \text{mA}, f = 30\, \text{MHz}$
- Electrical Ruggedness: $V_{CC} = 50\, \text{Vdc}, P_{out} = 250\, \text{W CW}, f = 30\, \text{MHz}, VSWR 3:1 at all Phase Angles$

NOTE:

2. To Mil–Std–1311 Version A, Test Method 2204, Two Tone, Reference each Tone.
C1, C2, C5, C7 — 170–780 pF, Arco 459
C3, C8, C9 — 0.1 μF, 100 V Ene
C4 — 500 μF @ 6.0 V
C6 — 360 pF, 3 x 120 pF 3.0 kV in parallel
C10 — 10 μF, 100 V
R1 — 10 Ω, 10 Watt
R2 — 10 Ω, 1.0 Watt

CR1 — 1N4997 or equivalent
L1 — 3 Turns, #16 Wire, 0.4" I.D., 0.3" Long
L2 — 0.6 μH, Ohmite Z-235 or equivalent
L3 — 12 Turns, #16 Enamelled Wire Closewound 0.25" I.D.
L4 — 4 Turns, 1/8" Copper Tubing, 0.6" I.D., 1.0" Long
L5, L6 — 2.0 μH, Fair-Rite 2643021801 Ferrite bead each or equivalent

Figure 1. 30 MHz Test Circuit Schematic
The RF Line NPN Silicon Power Transistor
250W, 30MHz, 50V

Figure 6. f_t versus Collector Current

Figure 7. IMD versus P_{out}

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
The RF Line NPN Silicon Power Transistor
250W, 30MHz, 50V

![Figure 8. Output Resistance and Capacitance versus Frequency](image)

![Figure 9. Series Equivalent Impedance](image)
MRF448

The RF Line NPN Silicon Power Transistor
250W, 30MHz, 50V

Rev. V1

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support

Unless otherwise noted, tolerances are inches ±0.005 [millimeters ±0.013mm]
MRF448

The RF Line NPN Silicon Power Transistor
250W, 30MHz, 50V

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.