The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Designed primarily for high-voltage applications as a high-power linear amplifier from 2.0 to 30 MHz. Ideal for marine and base station equipment.

- Specified 50 V, 30 MHz Characteristics —
 - Output power = 150 W (PEP)
 - Minimum gain = 13 dB
 - Efficiency = 45%
- Intermodulation distortion @ 150 W (PEP) —
 - IMD = –32 dB (Max)
- Diffused emitter resistors for superior ruggedness
- 100% tested for load mismatch at all phase angles with 30:1 VSWR @ 150 W CW

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Voltage</td>
<td>VCEO</td>
<td>50</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Voltage</td>
<td>VCEO</td>
<td>100</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Voltage</td>
<td>VEBQ</td>
<td>4.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Current — Continuous</td>
<td>IC</td>
<td>16</td>
<td>Adc</td>
</tr>
<tr>
<td>Withstand Current — 10 s</td>
<td>—</td>
<td>20</td>
<td>Adc</td>
</tr>
<tr>
<td>Total Device Dissipation @ Tc = 25°C</td>
<td>PD</td>
<td>233</td>
<td>Watts</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td>1.33</td>
<td>Watts</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>TSTG</td>
<td>–65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>RAJC</td>
<td>0.75</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Breakdown Voltage (IC = 200 mA dc, IE = 0)</td>
<td>VBRCE0</td>
<td>50</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Emitter Breakdown Voltage (IC = 10 mA dc, VBE = 0)</td>
<td>VBRCE5</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Breakdown Voltage (IC = 100 mA dc, IE = 0)</td>
<td>VBRCEO</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Breakdown Voltage (IE = 10 mA dc, IC = 0)</td>
<td>VBRCEO</td>
<td>4.0</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
</tbody>
</table>

(continued)
ELECTRICAL CHARACTERISTICS — continued (T_C = 25°C unless otherwise noted.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Current Gain (I_C = 5.0 Adc, V_CE = 5.0 Vdc)</td>
<td>h_FE</td>
<td>10</td>
<td>30</td>
<td>80</td>
<td>—</td>
</tr>
<tr>
<td>DYNAMIC CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Capacitance (V_CE = 50 Vdc, I_E = 0, f = 1.0 MHz)</td>
<td>C_Ob</td>
<td>—</td>
<td>220</td>
<td>300</td>
<td>pF</td>
</tr>
<tr>
<td>FUNCTIONAL TESTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common–Emitter Amplifier Gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_CE = 50 Vdc, P_out = 150 W (PEP), I_C(max) = 3.32 Acdc, f = 30; 30.001 MHz)</td>
<td>G_FE</td>
<td>13</td>
<td>15</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Output Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_CE = 50 Vdc, f = 30; 30.001 MHz)</td>
<td>P_out</td>
<td>150</td>
<td>—</td>
<td>—</td>
<td>W (PEP)</td>
</tr>
<tr>
<td>Collector Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_CE = 50 Vdc, P_out = 150 W (PEP), I_C(max) = 3.32 Acdc, f = 30, 30.001 MHz)</td>
<td>η</td>
<td>45</td>
<td>—</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td>Intermolecular Distortion (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_CE = 50 Vdc, P_out = 150 W (PEP), I_C = 3.32 Acdc)</td>
<td>IMD</td>
<td>—</td>
<td>−35</td>
<td>−32</td>
<td>dB</td>
</tr>
<tr>
<td>Electrical Ruggedness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_CE = 50 Vdc, P_out = 150 W CW, f = 30 MHz, VSWR 30:1 at all Phase Angles)</td>
<td>Ψ</td>
<td>No Degradation in Output Power</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
1. To Mil–Std–1311 Version A, Test Method 2204, Two Tone, Reference each Tone.
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

![Schematic Diagram]

- **C1, C2, C7**: 170–780 pF, Arco 459
- **C3, C8, C9**: 0.1 μF, 100 V Etec
- **C4**: 500 μF @ 6.0 V
- **C5**: 9.0–180 pF, Arco 463
- **C6**: 80–480 pF, Arco 466
- **C10**: 30 μF, 100 V
- **R1**: 10 Ω, 10 Watt
- **R2**: 10 Ω, 1.0 Watt
- **R3**: 5.0 – 3.3 Ω 1/2 Watt Carbon Resistors in Parallel
- **CR1**: 1N4997
- **L1**: 3 Turns, #16 Wire, 5/16” I.D., 5/16” Long
- **L2**: 10 μH Molded Choke
- **L3**: 12 Turns, #16 Enamelled Wire Clossowound, 1/4” I.D.
- **L4**: 5 Turns, 1/8” Copper Tubing, 9/16” I.D., 3/4” Long
- **L5**: 10 Ferrite Beads — Ferroxcube #56-540-65/3B

Figure 1. 30 MHz Test Circuit Schematic
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Supply Voltage

Figure 4. Power Gain versus Frequency

Figure 5. RF Safe Operating Area (SOAR)

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
MRF429

The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Figure 6. f_t versus Collector Current

Figure 7. IMD versus P_{out}

Figure 8. Output Capacitance versus Frequency

Figure 9. Output Resistance versus Frequency
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

MRF429

Figure 10. Series Equivalent Impedance
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Rev. V1

MRF429

MACOM

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

M/A-COM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM")
products. These materials are provided by MACOM as a service to its customers and may be used for
informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or
in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM
assumes no responsibility for errors or omissions in these materials. MACOM may make changes to
specifications and product descriptions at any time, without notice. MACOM makes no commitment to update
the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise,
to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR
INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY
OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN
THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS,
WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM
customers using or selling MACOM products for use in such applications do so at their own risk and agree to
fully indemnify MACOM for any damages resulting from such improper use or sale.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.