The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Designed primarily for high-voltage applications as a high-power linear amplifier from 2.0 to 30 MHz. Ideal for marine and base station equipment.

- Specified 50 V, 30 MHz Characteristics —
 - Output power = 150 W (PEP)
 - Minimum gain = 13 dB
 - Efficiency = 45%
- Intermodulation distortion @ 150 W (PEP) —
 - IMD = –32 dB (Max)
- Diffused emitter resistors for superior ruggedness
- 100% tested for load mismatch at all phase angles with 30:1 VSWR @ 150 W CW

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Voltage</td>
<td>VCEO</td>
<td>50</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Voltage</td>
<td>VCEO</td>
<td>100</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Voltage</td>
<td>VCEO</td>
<td>4.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Current — Continuous</td>
<td>IC</td>
<td>16</td>
<td>Adc</td>
</tr>
<tr>
<td>Withstand Current — 10 s</td>
<td></td>
<td>20</td>
<td>Adc</td>
</tr>
<tr>
<td>Total Device Dissipation @ T_C = 25°C</td>
<td>P_T</td>
<td>233</td>
<td>Watts</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td>1.33</td>
<td>W/C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_STG</td>
<td>–65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>R_AJC</td>
<td>0.75</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Breakdown Voltage (I_C = 200 mAdc, I_E = 0)</td>
<td>V_BRECEO</td>
<td>50</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Emitter Breakdown Voltage (I_C = 100 mAdc, V_BE = 0)</td>
<td>V_BRECES</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Breakdown Voltage (I_C = 100 mAdc, I_E = 0)</td>
<td>V_BRECEO</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Breakdown Voltage (I_E = 10 mAdc, I_C = 0)</td>
<td>V_BRECEO</td>
<td>4.0</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
</tbody>
</table>

(Note: additional information continues on the next page.)
Electrical Characteristics — continued (T_C = 25°C unless otherwise noted.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Current Gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_C = 5.0 Adc, V_CE = 5.0 Vdc)</td>
<td>h_FE</td>
<td>10</td>
<td>30</td>
<td>80</td>
<td>—</td>
</tr>
<tr>
<td>Dynamic Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Capacitance</td>
<td></td>
<td></td>
<td>220</td>
<td>300</td>
<td>pF</td>
</tr>
<tr>
<td>(V_CE = 50 Vdc, I_E = 0, f = 1.0 MHz)</td>
<td>C_0b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common–Emitter Amplifier Gain</td>
<td></td>
<td>13</td>
<td>15</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>(V_CC = 50 Vdc, P_out = 150 W (PEP), I_C(max) = 3.32 Adc, f = 30; 30.001 MHz)</td>
<td>G_FE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Power</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td>W (PEP)</td>
</tr>
<tr>
<td>(V_CE = 50 Vdc, f = 30; 30.001 MHz)</td>
<td>P_out</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>(V_CC = 50 Vdc, P_out = 150 W (PEP), I_C(max) = 3.32 Adc, f = 30; 30.001 MHz)</td>
<td>η</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermodulation Distortion (1)</td>
<td></td>
<td></td>
<td>−35</td>
<td>−32</td>
<td>dB</td>
</tr>
<tr>
<td>(V_CE = 50 Vdc, P_out = 150 W (PEP), I_C = 3.32 Adc)</td>
<td>IMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Ruggedness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_CC = 50 Vdc, P_out = 150 W CW, f = 30 MHz, VSWR 30:1 at all Phase Angles)</td>
<td>Ψ</td>
<td></td>
<td></td>
<td></td>
<td>No Degradation in Output Power</td>
</tr>
</tbody>
</table>

Note:
1. To MIL–STD–1311 Version A, Test Method 2204, Two Tone, Reference each Tone.
MRF429

The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Rev. V1

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support

Figure 1. 30 MHz Test Circuit Schematic

C1, C2, C7 — 170–780 pF, Arco 459
C3, C8, C9 — 0.1 μF, 100 V Emtc
C4 — 500 μF @ 6.0 V
C5 — 9.0–180 pF, Arco 463
C6 — 80–480 pF, Arco 465
C10 — 30 μF, 100 V
R1 — 10 Ω, 10 Watt
R2 — 10 Ω, 1.0 Watt
R3 — 5.0 – 3.3 Ω 1/2 Watt Carbon Resistors in Parallel
CR1 — 1N4997
L1 — 3 Turns, #16 Wire, 5/16" I.D., 5/16" Long
L2 — 10 μH Molded Choke
L3 — 12 Turns, #16 Enamelled Wire Closedwound, 1/4" I.D.
L4 — 5 Turns, 1/8" Copper Tubing, 9/16" I.D., 3/4" Long
L5 — 10 Ferrite Beads — Ferroxcube #56-590-6538

RF INPUT

RF OUTPUT

L5

C8

C9

C10

50 Vdc

C6

L4

C5

DUT

R3

L3

C2

L1

R2

RF INPUT

C1

C7

R1

Bias

C3

C4

CR1
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Figure 2. Output Power versus Input Power
Figure 3. Output Power versus Supply Voltage

Figure 4. Power Gain versus Frequency
Figure 5. RF Safe Operating Area (SOAR)

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Figure 6. f_t versus Collector Current

Figure 7. IMD versus P_{out}

Figure 8. Output Capacitance versus Frequency

Figure 9. Output Resistance versus Frequency

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Figure 10. Series Equivalent Impedance
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Rev. V1

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support

Unless otherwise noted, tolerances are inches ±0.005" [millimeters ±0.13mm]