The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Designed primarily for high-voltage applications as a high-power linear amplifier from 2.0 to 30 MHz. Ideal for marine and base station equipment.

- Specified 50 V, 30 MHz Characteristics —
 - Output power = 150 W (PEP)
 - Minimum gain = 13 dB
 - Efficiency = 45%
- Intermodulation distortion @ 150 W (PEP) —
 - IMD = –32 dB (Max)
- Diffused emitter resistors for superior ruggedness
- 100% tested for load mismatch at all phase angles with 30:1 VSWR @ 150 W CW

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Voltage</td>
<td>V_{CEO}</td>
<td>50</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Voltage</td>
<td>V_{CEO}</td>
<td>100</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Voltage</td>
<td>V_{EBO}</td>
<td>4.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Current — Continuous</td>
<td>I_{C}</td>
<td>16</td>
<td>Adc</td>
</tr>
<tr>
<td>Withstand Current — 10 s</td>
<td></td>
<td>20</td>
<td>Adc</td>
</tr>
<tr>
<td>Total Device Dissipation @ T_{C} = 25°C</td>
<td>P_{D}</td>
<td>233</td>
<td>Watts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.33</td>
<td>W/°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{stg}</td>
<td>–65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>R_{AJC}</td>
<td>0.75</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS (T_{C} = 25°C unless otherwise noted.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Breakdown Voltage (I_{C} = 200 mA, I_{E} = 0)</td>
<td>V_{BRIEEO}</td>
<td>50</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Emitter Breakdown Voltage (I_{C} = 100 mA, V_{BE} = 0)</td>
<td>V_{BRIEES}</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Breakdown Voltage (I_{C} = 100 mA, I_{E} = 0)</td>
<td>V_{BRIBEO}</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Breakdown Voltage (I_{E} = 10 mA, I_{C} = 0)</td>
<td>V_{BRIEBO}</td>
<td>4.0</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
</tbody>
</table>

(continued)
ELECTRICAL CHARACTERISTICS — continued (T_C = 25°C unless otherwise noted.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Current Gain</td>
<td>h_FE</td>
<td>10</td>
<td>30</td>
<td>80</td>
<td>—</td>
</tr>
</tbody>
</table>

DYNAMIC CHARACTERISTICS

| Output Capacitance | C_{ob} | 220 | 300 | pF |

FUNCTIONAL TESTS

| Common–Emitter Amplifier Gain
 (V_CE = 50 Vdc, I_C = 3.32 A, f = 30; 30,000 MHz) | G_{FE} | 13 | 15 | — | dB |
| Output Power | P_{out} | 150 | — | — | W (PEP) |
| Collector Efficiency
 (V_CE = 50 Vdc, P_{out} = 150 W (PEP), I_C(max) = 3.32 A, f = 30, 30,000 MHz) | η | 45 | — | — | % |
| Intermodulation Distortion (1)
 (V_CE = 50 Vdc, P_{out} = 150 W (PEP), I_C = 3.32 A) | IMD | — | —35 | —32 | dB |
| Electrical Ruggedness
 (V_CE = 50 Vdc, P_{out} = 150 W CW, f = 30 MHz, VSWR 3:1 at all Phase Angles) | Ψ | No Degradation in Output Power |

NOTE:
1. To Mil–Std–1311 Version A, Test Method 2204, Two Tone, Reference each Tone.
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

C1, C2, C7 — 170–780 pF, Arco 459
C3, C8, C9 — 0.1 µF, 100 V Erte
C4 — 500 µF @ 6.0 V
C5 — 9.0–180 pF, Arco 463
C6 — 60–480 pF, Arco 465
C10 — 30 µF, 100 V
R1 — 10 Ω, 10 Watt
R2 — 10 Ω, 1.0 Watt
R3 — 5.0 – 3.3 Ω 1/2 Watt Carbon Resistors in Parallel
CR1 — 1N4997
L1 — 3 Turns, #16 Wire, 5/16” I.D., 5/16” Long
L2 — 10 µH Molded Choke
L3 — 12 Turns, #16 Enamelled Wire Closewound, 1/4” I.D.
L4 — 5 Turns, 1/8” Copper Tubing, 9/16” I.D., 3/4” Long
L5 — 10 Ferrite Beads — Ferroxcube #56–590–653B

Figure 1. 30 MHz Test Circuit Schematic
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Supply Voltage

Figure 4. Power Gain versus Frequency

Figure 5. RF Safe Operating Area (SOAR)

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Figure 6. f_t versus Collector Current

Figure 7. IMD versus P_{out}

Figure 8. Output Capacitance versus Frequency

Figure 9. Output Resistance versus Frequency
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Figure 10. Series Equivalent Impedance
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Rev. V1

MRF429

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support

Unless otherwise noted, tolerances are inches ±0.005" [millimeters ±0.13mm]
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.