The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Designed primarily for high-voltage applications as a high-power linear amplifier from 2.0 to 30 MHz. Ideal for marine and base station equipment.

- Specified 50 V, 30 MHz Characteristics —
 Output power = 150 W (PEP)
 Minimum gain = 13 DB
 Efficiency = 45%
- Intermodulation distortion @ 150 W (PEP) —
 IMD = -30 db (max.)
- 100% tested for load mismatch at all phase angles with 30:1 VSWR @ 150 W CW

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-Emitter Voltage</td>
<td>V_{CEO}</td>
<td>55</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector-Base Voltage</td>
<td>V_{CBO}</td>
<td>110</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter-Base Voltage</td>
<td>V_{EBO}</td>
<td>4.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Current — Continuous</td>
<td>I_{C}</td>
<td>20</td>
<td>Adc</td>
</tr>
<tr>
<td>Withstand Current — 10 s</td>
<td>—</td>
<td>30</td>
<td>Adc</td>
</tr>
<tr>
<td>Total Device Dissipation @ T_{C} = 25 °C</td>
<td>P_{D}</td>
<td>320</td>
<td>Watts W/°C</td>
</tr>
<tr>
<td>Duration above 25 °C</td>
<td></td>
<td>1.83</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{stg}</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>R_{aJC}</td>
<td>0.5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS (T_{C} = 25 °C unless otherwise noted.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
</table>

OFF CHARACTERISTICS

- Collector-Emitter Breakdown Voltage (I_{C} = 200 mA_{dc}, I_{B} = 0) | V_{BRCEO} | 55 | — | — | Vdc |
- Collector-Emitter Breakdown Voltage (I_{C} = 100 mA_{dc}, V_{BE} = 0) | V_{BRCES} | 110 | — | — | Vdc |
- Collector-Base Breakdown Voltage (I_{C} = 100 mA_{dc}, I_{B} = 0) | V_{BRCEO} | 110 | — | — | Vdc |
- Emitter-Base Breakdown Voltage (I_{E} = 10 mA_{dc}, I_{C} = 0) | V_{BRHEO} | 4.0 | — | — | Vdc |

(continued)
Electrical Characteristics — Continued

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Current Gain (I_C = 5.0 A, V_CE = 5.0 Vdc)</td>
<td>h_FE</td>
<td>10</td>
<td>30</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Dynamic Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Capacitance (V_{CB} = 50 Vdc, I_C = 0, f = 1.0 MHz)</td>
<td>C_{OG}</td>
<td>—</td>
<td>220</td>
<td>250</td>
<td>pF</td>
</tr>
</tbody>
</table>

Functional Tests

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common-Collector Amplifier Gain (V_{CE} = 50 Vdc, P_{OUT} = 150 W (PEP), I_C(max) = 3.32 Adc, f = 30 MHz)</td>
<td>G_{PE}</td>
<td>13</td>
<td>15</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Output Power (V_{CE} = 50 Vdc, f = 30 MHz)</td>
<td>P_{OUT}</td>
<td>150</td>
<td>—</td>
<td>—</td>
<td>W (PEP)</td>
</tr>
<tr>
<td>Collector Efficiency (V_{CE} = 50 Vdc, P_{OUT} = 150 W (PEP), I_C(max) = 3.32 Adc, f = 30 MHz)</td>
<td>η</td>
<td>45</td>
<td>—</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td>Intermodulation Distortion (1) (V_{CE} = 50 Vdc, P_{OUT} = 150 W (PEP), I_C = 3.32 Adc)</td>
<td>IMD</td>
<td>—</td>
<td>-33</td>
<td>-30</td>
<td>dB</td>
</tr>
<tr>
<td>Electrical Ruggedness (V_{CE} = 50 Vdc, P_{OUT} = 150 W (PEP), I_C(max) = 3.32 Adc, VSWR 3:1 at all Phase Angles)</td>
<td>Ψ</td>
<td>—</td>
<td>No Degradation in Output Power</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
1. To Mil-Std-1311 Version A, Test Method 2204B, Two Tone, Reference each Tone.
MRF428

The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Figure 1. 30 MHz Test Circuit Schematic

Figure 2 - OUTPUT POWER versus INPUT POWER

Figure 3 - OUTPUT POWER versus SUPPLY VOLTAGE

C1, C2, C7 — 170-730 pF, Arco 469
C3, C8, C9 — 0.1μF, 100 V Elko
C4 — 500 μF @ 6.0 V
C5 — 9.0-180 pF, Arco 463
C6 — 80-480 pF, Arco 466
C10 — 30 μF, 100 V
R1 — 10 Ω, 10 Watt
R2 — 10 Ω, 10 Watt
CR1 — 1N4967
L1 — 3 Turns, #16 Wire, 5/16" I.D., 5/16" Long
L2 — 10 μH Molded Choke
L3 — 12 Turns, #16 Enamelled Wire Closewound, 1/4" I.D.
L4 — 5 Turns, 1/8" Copper Tubing, 9/16" I.D., 3/4" Long
L5 — 10 Ferrite Beads — Ferroxcube #56-590-85/3B

FOR FURTHER INFORMATION AND SUPPORT PLEASE VISIT:
https://www.macom.com/support
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

FIGURE 4 – POWER GAIN versus FREQUENCY

FIGURE 5 – DC SAFE OPERATING AREA

FIGURE 6 – VCC = 40 Vdc

FIGURE 7 – VCC = 50 Vdc

INTERMODULATION DISTORTION versus OUTPUT POWER

For further information and support please visit:
https://www.macom.com/support
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

MRF428

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
MRF428

The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.