MRF428

The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Designed primarily for high-voltage applications as a high-power linear amplifier from 2.0 to 30 MHz. Ideal for marine and base station equipment.

- Specified 50 V, 30 MHz Characteristics —
 - Output power = 150 W (PEP)
 - Minimum gain = 13 DB
 - Efficiency = 45%
- Intermodulation distortion @ 150 W (PEP) —
 - IMD = -30 db (max.)
- 100% tested for load mismatch at all phase angles with 30:1 VSWR @ 150 W CW

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-Emitter Voltage</td>
<td>V_{CEO}</td>
<td>55</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector-Base Voltage</td>
<td>V_{CBO}</td>
<td>110</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter-Base Voltage</td>
<td>V_{EBO}</td>
<td>4.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Current — Continuous</td>
<td>I_{C}</td>
<td>20</td>
<td>Adc</td>
</tr>
<tr>
<td>Withstand Current — 10 s</td>
<td>—</td>
<td>30</td>
<td>Adc</td>
</tr>
<tr>
<td>Total Device Dissipation @ T_{j} = 25 ºC</td>
<td>P_{D}</td>
<td>320</td>
<td>Watts</td>
</tr>
<tr>
<td>Donor above 25 ºC</td>
<td></td>
<td>1.83</td>
<td>W/ºC</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{sg}</td>
<td>-65 to +150</td>
<td>ºC</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>R_{ej}</td>
<td>0.5</td>
<td>*CW</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS (T_{j} = 25 ºC unless otherwise noted)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-Emitter Breakdown Voltage (I_{C} = 200 mA, I_{B} = 0)</td>
<td>V_{BRCEO}</td>
<td>55</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector-Emitter Breakdown Voltage (I_{C} = 100 mA, V_{BE} = 0)</td>
<td>V_{BRCES}</td>
<td>110</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector-Base Breakdown Voltage (I_{C} = 100 mA, I_{B} = 0)</td>
<td>V_{BRCEO}</td>
<td>110</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter-Base Breakdown Voltage (I_{E} = 10 mA, I_{C} = 0)</td>
<td>V_{BRHB}</td>
<td>4.0</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
</tbody>
</table>

(continued)
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

ELECTRICAL CHARACTERISTICS — continued (T_c = 25 °C unless otherwise noted.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
</table>

ON CHARACTERISTICS

DC Current Gain
(I_c = 5.0 Adc, V_{CE} = 5.0 Vdc)
| h_{FE} | 10 | 30 | — | — |

DYNAMIC CHARACTERISTICS

Output Capacitance
(V_{CB} = 50 Vdc, I_B = 0, f = 1.0 MHz)
| C_{OG} | — | 220 | 250 | pF |

FUNCTIONAL TESTS

Common-Emitter Amplifier Gain
(V_{CE} = 50 Vdc, P_{OUT} = 150 W (PEP), I_C(max) = 3.32 Adc,
 f = 30 MHz)
| G_{PE} | 13 | 15 | — | dB |

Output Power
(V_{CE} = 50 Vdc, f = 30 MHz)
| P_{OUT} | 150 | — | — | W (PEP) |

Collector Efficiency
(V_{CE} = 50 Vdc, P_{OUT} = 150 W (PEP), I_C(max) = 3.32 Adc,
 f = 30 MHz)
| η | 45 | — | — | % |

Intermodulation Distortion (1)
(V_{CE} = 50 Vdc, P_{OUT} = 150 W (PEP), I_C = 3.32 Adc)
| IMD | — | -33 | -30 | dB |

Electrical Ruggedness
(V_{CE} = 50 Vdc, P_{OUT} = 150 W (PEP), I_C(max) = 3.32 Adc,
 VSWR 30:1 at all Phase Angles)
| ¥ | No Degradation in Output Power |

NOTE:
1. To Mil-Std-1311 Version A, Test Method 2204B, Two Tone, Reference each Tone.
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Figure 1. 30 MHz Test Circuit Schematic

C1, C2, C7 — 170-780 pF, Arco 469
C3, C6, C9 — 0.1μF, 100 V Erics
C4 — 500 μF @ 5.0 V
C5 — 9.0-180 pF, Arco 463
C8 — 80-480 pF, Arco 466
C10 — 30 μF, 100 V
R1 — 10 Ω, 10 Watt
R2 — 10 Ω, 1.0 Watt
CR1 — 1N4967
L1 — 3 Turns, #16 Wire, 5/16” I.D., 5/16” Long
L2 — 10 μH Molded Choke
L3 — 12 Turns, #16 Enamelled Wire Closewound, 1/4” I.D.
L4 — 5 Turns, 1/8” Copper Tubing, 9/16” I.D., 3/4” Long
L5 — 10 Ferrite Beads — Ferroxcube #55-590-55/3B

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Figure 4 – Power Gain versus Frequency

Figure 5 – DC Safe Operating Area

Figure 6 – \(V_{CC} = 40 \text{ Vdc} \)

Figure 7 – \(V_{CC} = 50 \text{ Vdc} \)

For further information and support please visit:
https://www.macom.com/support
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Figure 8 – Output Capacitance versus Frequency

Figure 9 – Output Resistance versus Frequency

For further information and support please visit: https://www.macom.com/support
MRF428

The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

Unless otherwise noted, tolerances are inches ±0.005" [millimeters ±0.13mm].

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support
The RF Line NPN Silicon Power Transistor
150W(PEP), 30MHz, 50V

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM")
products. These materials are provided by MACOM as a service to its customers and may be used for
informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or
in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM
assumes no responsibility for errors or omissions in these materials. MACOM may make changes to
specifications and product descriptions at any time, without notice. MACOM makes no commitment to update
the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to its specifications and product descriptions. No license, express or implied, by estoppeels or otherwise,
to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR
INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY
OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN
THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS,
WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM
customers using or selling MACOM products for use in such applications do so at their own risk and agree to
fully indemnify MACOM for any damages resulting from such improper use or sale.

For further information and support please visit:
https://www.macom.com/support