Designed for high gain driver and output linear amplifier stages in 1.5 to 30 MHz HF/SSB equipment.

- Specified 28 V, 30 MHz characteristics —
 - Output power = 25 W (PEP)
 - Minimum gain = 22 dB
 - Efficiency = 35%
- Intermodulation distortion @ 25 W (PEP) —IMD = –30 dB (max)
- 100% tested for load mismatch at all phase angles with 30:1 VSWR
- Class A and AB characterization
- BLX 13 equivalent

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Voltage</td>
<td>V_{CEO}</td>
<td>35</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Voltage</td>
<td>V_{CBO}</td>
<td>65</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Voltage</td>
<td>V_{EBO}</td>
<td>4.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Current — Continuous</td>
<td>I_C</td>
<td>3.0</td>
<td>Adc</td>
</tr>
<tr>
<td>Withstand Current — 5 s</td>
<td>—</td>
<td>6.0</td>
<td>Adc</td>
</tr>
<tr>
<td>Total Device Dissipation @ $T_C = 25^\circ C$ (1)</td>
<td>P_D</td>
<td>70</td>
<td>Watts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td>W/C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{stg}</td>
<td>–65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>R_{LJC}</td>
<td>2.5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ C$ unless otherwise noted.)

OFF CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Breakdown Voltage ($I_C = 50 \text{ mA}_{dc}, I_E = 0$)</td>
<td>$V_{BR(CEO)}$</td>
<td>35</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Breakdown Voltage ($I_C = 50 \text{ mA}_{dc}, I_E = 0$)</td>
<td>$V_{BR(CBO)}$</td>
<td>65</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Breakdown Voltage ($I_E = 10 \text{ mA}_{dc}, I_C = 0$)</td>
<td>$V_{BR(EBO)}$</td>
<td>4.0</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Cutoff Current ($V_{CE} = 28 \text{ V}{dc}, V{BE} = 0$)</td>
<td>I_{CES}</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>mA_{dc}</td>
</tr>
</tbody>
</table>

NOTE:
1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.

(continued)
The RF Line NPN Silicon Power Transistor
25W(PEP), 30MHz, 28V

ELECTRICAL CHARACTERISTICS — continued *(T_C = 25°C unless otherwise noted.)*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Current Gain</td>
<td>h FE</td>
<td>10</td>
<td>35</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

DYNAMIC CHARACTERISTICS

| Output Capacitance | C cb | — | 60 | 80 | pF |

FUNCTIONAL TESTS (SSB)

Common–Emitter Amplifier Gain	G FE	22	25	—	dB
Collector Efficiency	η	35	—	—	%
Intermodulation Distortion (2)	IMD(23)	—	−35	−30	dB
Load Mismatch	Ψ	No Degradation in Output Power			

CLASS A PERFORMANCE

Intermodulation Distortion (2) and Power Gain	G FE	—	23.5	—	dB
IMD(23)	—	−40	—	—	dB
IMD(25)	—	−55	—	—	dB

NOTE:
1. To Mil–Std–1311 Version A, Test Method 2204B, Two Tone, Reference each Tone.
MRF426

The RF Line NPN Silicon Power Transistor
25W(PEP), 30MHz, 28V

Rev. V1

C1, C2 — ARCO 459, 190–790 pF
C3, C4 — ARCO 454, 25–280 pF
C5 — 120 pF Dipped Mica
C6, C7 — 100 μF, 15 Vdc
C8 — 680 pF F.T. Allen Bradley
C9 — 1.0 μF 35 V Tantalum
CR1 — 1N4997

L1 — 3 Tums #16 0.25" ID
L2 — 6 Tums #16 0.5" ID
L3 — 7 Tums #20 0.38" ID
L4 — 10 μH Molded Choke Delevan
RFC1 — Ferroxcube VK200/20-4B
RFC2 — 3-Ferroxcube 5653065-3B
RF — Input/Output Connectors UG53 A/jx
R1 — 10 Ω 1/2 Watt 10%

Adjust Bias (Base) for ICQ = 20 mA with No RF Applied

Figure 1. 30 MHz Linear Test Circuit
The RF Line NPN Silicon Power Transistor
25W(PEP), 30MHz, 28V

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Supply Voltage

Figure 4. Power Gain versus Frequency

Figure 5. Intermodulation Distortion versus Output Power
The RF Line NPN Silicon Power Transistor
25W(PEP), 30MHz, 28V

Figure 6. DC Safe Operating Area
The RF Line NPN Silicon Power Transistor
25W(PEP), 30MHz, 28V

Figure 7. Output Capacitance versus Frequency

Figure 8. Output Resistance versus Frequency

Figure 9. Series Equivalent Input Impedance
The RF Line NPN Silicon Power Transistor
25W(PEP), 30MHz, 28V

MRF426

MACOM

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support

Unless otherwise noted, tolerances are inches ±.005" [millimeters ±0.13mm]
The RF Line NPN Silicon Power Transistor
25W(PEP), 30MHz, 28V

M/A-COM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.