The RF Line NPN Silicon Power Transistor
100W(PEP), 30MHz, 28V

M/A-COM Products
Released - Rev. 07.07

Designed primarily for application as a high–power linear amplifier from 2.0 to 30 MHz.

- Specified 12.5 V, 30 MHz characteristics —
 - Output power = 100 W (PEP)
 - Minimum gain = 10 dB
 - Efficiency = 40%
- Intermodulation distortion @ 100 W (PEP) — IMD = –30 dB (min.)
- 100% tested for load mismatch at all phase angles with 30:1 VSWR

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Voltage</td>
<td>V_{CEO}</td>
<td>20</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Voltage</td>
<td>V_{CBO}</td>
<td>45</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Voltage</td>
<td>V_{EBO}</td>
<td>3.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Current — Continuous</td>
<td>I_C</td>
<td>20</td>
<td>Adc</td>
</tr>
<tr>
<td>Withstand Current — 10 s</td>
<td>—</td>
<td>30</td>
<td>Adc</td>
</tr>
<tr>
<td>Total Device Dissipation @ $T_C = 25^\circ C$</td>
<td>P_D</td>
<td>290</td>
<td>Watts</td>
</tr>
<tr>
<td>Derate above $25^\circ C$</td>
<td></td>
<td>1.66</td>
<td>Watts/W°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{sto}</td>
<td>–65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>R_{WJC}</td>
<td>0.5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ C$ unless otherwise noted.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Breakdown Voltage ($I_C = 50$ mA, $I_B = 0$)</td>
<td>$V_{(BR)CEO}$</td>
<td>20</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Emitter Breakdown Voltage ($I_C = 200$ mA, $V_{BE} = 0$)</td>
<td>$V_{(BR)CES}$</td>
<td>45</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Breakdown Voltage ($I_C = 200$ mA, $I_E = 0$)</td>
<td>$V_{(BR)CBO}$</td>
<td>45</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Breakdown Voltage ($I_E = 10$ mA, $I_C = 0$)</td>
<td>$V_{(BR)EBO}$</td>
<td>3.0</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Cutoff Current ($V_{CE} = 16$ V, $I_{BE} = 0$, $T_C = 25^\circ C$)</td>
<td>I_{CES}</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>mAdc</td>
</tr>
</tbody>
</table>

(continued)
Electrical Characteristics – continued (T_c = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Current Gain (I_C = 5.0 Adc, V_CBE = 5.0 Vdc)</td>
<td>h_FE</td>
<td>10</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Capacitance (V_CE = 12.5 Vdc, I_E = 0, f = 1.0 MHz)</td>
<td>C_OB</td>
<td>—</td>
<td>560</td>
<td>800</td>
<td>pF</td>
</tr>
<tr>
<td>Functional Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common–Emitter Amplifier Power Gain (V_CCE = 12.5 Vdc, P_OUT = 100 W, I_C(max) = 10 Adc, I_CQ = 150 mA, f = 30, 30.001 MHz)</td>
<td>G_FE</td>
<td>10</td>
<td>12</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Collector Efficiency (V_CCE = 12.5 Vdc, P_OUT = 100 W, I_C(max) = 10 Adc, I_CQ = 150 mA, f = 30, 30.001 MHz)</td>
<td>η</td>
<td>40</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Intermodulation Distortion (I) (V_CE = 12.5 Vdc, P_OUT = 100 W, I_C = 10 Adc, I_CQ = 150 mA, f = 30, 30.001 MHz)</td>
<td>IMD</td>
<td>—</td>
<td>—33</td>
<td>—30</td>
<td>dB</td>
</tr>
</tbody>
</table>

NOTE:
1. To proposed EIA method of measurement. Reference peak envelope power.

![RF Line NPN Silicon Power Transistor Schematic](image)

Figure 1. 30 MHz Test Circuit Schematic

- **COMPONENTS:**
 - C1, C2, C4: 170–780 pF, ARCO 469
 - C3: 80–480 pF, ARCO 466
 - C5, C7, C10: 0.1 µF, 100 V
 - C6: MALLORY 500 µF @ 15 V Electrolytic
 - C9: 100 µF, 15 V Electrolytic
 - C8: 1000 pF, 350 V UNDERWOOD
 - R1: 10 Ω, 25 Watt Wirewound
 - R2: 10 Ω, 1.0 Watt Carbon
 - CR1: 1N4997
 - L1: 3 Turns, #16 Wire, 5/16” I.D., 5/16” Long
 - L2: 12 Turns, Enameled Wire Closewound, 1/4” I.D.
 - L3: 1–3/4 Turns, 1/8” Tubing, 3/8” I.D., 3/8” Long
 - L4: 10 µH Molded Choke
 - L5: 10 Ferrite Beads – FERROXCUBE #56–590–65/3B

ADVANCED:
Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY:
Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

- **North America** Tel: 800.366.2266 / Fax: 978.366.2266
- **Europe** Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- **Asia/Pacific** Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macomtech.com for additional data sheets and product information.
MRF421

The RF Line NPN Silicon Power Transistor
100W(PEP), 30MHz, 28V

M/A-COM Products
Released - Rev. 07.07

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Supply Voltage

Figure 4. Power Gain versus Frequency

Figure 5. Intermodulation Distortion versus Output Power

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- **North America** Tel: 800.366.2266 / Fax: 978.366.2266
- **Europe** Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- **Asia/Pacific** Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
MRF421

The RF Line NPN Silicon Power Transistor
100W(PEP), 30MHz, 28V

Figure 6. DC Safe Operating Area

Figure 7. Series Equivalent Impedance

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
The RF Line NPN Silicon Power Transistor
100W(PEP), 30MHz, 28V

Figure 8. Output Capacitance versus Frequency
Figure 9. Output Resistance versus Frequency

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.