The MRF393 is two transistors in a single package with separate base and collector leads and emitters common. This arrangement provides the designer with a space saving device capable of operation in a push–pull configuration.

PUSH–PULL TRANSISTORS

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Voltage</td>
<td>V_{CEO}</td>
<td>30</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Voltage</td>
<td>V_{CBO}</td>
<td>60</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Voltage</td>
<td>V_{EBO}</td>
<td>4.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Current — Continuous</td>
<td>I_C</td>
<td>16</td>
<td>Adc</td>
</tr>
<tr>
<td>Total Device Dissipation @ $T_C = 25\degree C$ (1)</td>
<td>P_D</td>
<td>270</td>
<td>Watts</td>
</tr>
<tr>
<td>Derate above 25\degree C</td>
<td></td>
<td>1.54</td>
<td>W/\degree C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{stg}</td>
<td>−65 to +150</td>
<td>\degree C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_J</td>
<td>200</td>
<td>\degree C</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>R_{thJC}</td>
<td>0.65</td>
<td>\degree C/W</td>
</tr>
</tbody>
</table>

NOTE:

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF push–pull amplifier.
The RF Line Controlled “Q” Broadband Power Transistor
100W, 30 to 500MHz, 28V

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Breakdown Voltage (I_C = 50 mAdc, I_B = 0)</td>
<td>V(BC)CEO</td>
<td>30</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Emitter Breakdown Voltage (I_C = 50 mAdc, V_BE = 0)</td>
<td>V(BC)CES</td>
<td>60</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Breakdown Voltage (I_E = 5.0 mAdc, I_C = 0)</td>
<td>V(BR)EBO</td>
<td>4.0</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Cutoff Current (V_CB = 30 Vdc, I_E = 0)</td>
<td>I_CBO</td>
<td>—</td>
<td>—</td>
<td>5.0</td>
<td>mAdc</td>
</tr>
</tbody>
</table>

ON CHARACTERISTICS (1)

| DC Current Gain (I_C = 1.0 Adc, V_CE = 5.0 Vdc) | hFE | 20 | — | 100 | — |

DYNAMIC CHARACTERISTICS (1)

| Output Capacitance (V_CB = 28 Vdc, I_E = 0, f = 1.0 MHz) | C_{CB} | 40 | 75 | 95 | pF |

FUNCTIONAL TESTS (2) — See Figure 1

Common–Emitter Amplifier Power Gain (V_CC = 28 Vdc, P_out = 100 W, f = 500 MHz)	G_pe	7.5	6.5	—	dB
Collector Efficiency (V_CC = 28 Vdc, P_out = 100 W, f = 500 MHz)	η	50	55	—	%
Load Mismatch (V_CC = 28 Vdc, P_out = 100 W, f = 500 MHz, VSWR = 30:1, all phase angles)	Ψ	No Degradation in Output Power			

NOTES:
1. Each transistor chip measured separately.
2. Both transistor chips operating in push–pull amplifier.
The RF Line Controlled “Q” Broadband Power Transistor
100W, 30 to 500MHz, 28V

Rev. V1

MRF393

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support

Figure 1. 600 MHz Test Fixture

C1, C2, C7, C8 — 240 pF 100 mil Chip Cap
C3 — 15 pF 100 mil Chip Cap
C4 — 24 pF 100 mil Chip Cap
C5 — 33 pF 100 mil Chip Cap
C6 — 12 pF 100 mil Chip Cap
C9, C13 — 1000 pF 100 mil Chip Cap
C10, C14 — 680 pF Feedthru Cap
C11, C15 — 0.1 μF Ceramic Disc Cap
C12, C16 — 50 μF 50 V

L1, L2 — 0.15 μH Molded Choke with Ferrite Bead
L3, L4 — 2–1/2 Turns #20 AWG 0.200” ID
L5, L6 — 3–1/2 Turns #18 AWG 0.200” ID
B1, B2 — Balun 50 Ω Semi Rigid Coax, 86 mil OD, 4” Long
Z1, Z2 — 860 mil Long x 125 mil W. Microstrip
Z3, Z4 — 200 mil Long x 125 mil W. Microstrip
Z5, Z6 — 800 mil Long x 125 mil W. Microstrip

Board Material — 0.0325” Teflon–Fiberglass, εᵣ = 2.56, 1 oz. Copper Clad both sides.
The RF Line Controlled “Q” Broadband Power Transistor
100W, 30 to 500MHz, 28V

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Input Power

Figure 4. Output Power versus Supply Voltage

Figure 5. Output Power versus Supply Voltage
The RF Line Controlled “Q” Broadband Power Transistor
100W, 30 to 500MHz, 28V

NOTE: Z_{in} & Z_{OL}^* are given from base-to-base and collector-to-collector respectively.

Figure 6. Series Equivalent Input/Output Impedance

Figure 7. Class AB Output Power versus Input Power

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
The RF Line Controlled “Q” Broadband Power Transistor
100W, 30 to 500MHz, 28V

REV. V1

MRF393

6

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.