The RF Line NPN Silicon Power Transistor
80W, 3.0-200MHz, 28V

MRF316

Designed primarily for wideband large-signal output amplifier stages in the 30–200 MHz frequency range.

- Guaranteed performance at 150 MHz, 28 Vdc
 - Output power = 80 W
 - Minimum gain = 10 dB
- Built-in matching network for broadband operation
- 100% tested for load mismatch at all phase angles with 30:1 VSWR
- Gold metallization system for high reliability applications

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Voltage</td>
<td>(V_{CEO})</td>
<td>35</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Voltage</td>
<td>(V_{CBO})</td>
<td>65</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Voltage</td>
<td>(V_{EBO})</td>
<td>4.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Current — Continuous Peak</td>
<td>(I_C)</td>
<td>9.0</td>
<td>Adc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>Total Device Dissipation @ (T_C = 25^\circ C) (1)</td>
<td>(P_D)</td>
<td>220</td>
<td>Watts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.26</td>
<td>W/(^\circ C)</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>(T_{stg})</td>
<td>-65 to +150</td>
<td>(^\circ C)</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>(R_{JUC})</td>
<td>0.8</td>
<td>(^\circ C/W)</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS (\(T_C = 25^\circ C \) unless otherwise noted.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Breakdown Voltage ((I_C = 50 \mathrm{mADC}, I_B = 0))</td>
<td>(V_{BRICEO})</td>
<td>35</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Emitter Breakdown Voltage ((I_C = 50 \mathrm{mADC}, V_{BE} = 0))</td>
<td>(V_{BRICE})</td>
<td>65</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Breakdown Voltage ((I_C = 50 \mathrm{mADC}, I_E = 0))</td>
<td>(V_{BRICBO})</td>
<td>65</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Breakdown Voltage ((I_E = 5.0 \mathrm{mADC}, I_C = 0))</td>
<td>(V_{BRIBEBO})</td>
<td>4.0</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Cutoff Current ((V_{CE} = 30 \mathrm{VDC}, I_E = 0))</td>
<td>(I_{CBO})</td>
<td>—</td>
<td>—</td>
<td>5.0</td>
<td>mAdc</td>
</tr>
</tbody>
</table>

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
MRF316

The RF Line NPN Silicon Power Transistor
80W, 3.0-200MHz, 28V

DC Current Gain

\(I_c = 4.0 \ A_{dc}, V_{CE} = 5.0 \ V_{dc} \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_{FE})</td>
<td>10</td>
<td>—</td>
<td>80</td>
</tr>
</tbody>
</table>

Output Capacitance

\(V_{CB} = 28 \ V_{dc}, I_E = 0, f = 1.0 \ MHz \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{CE})</td>
<td>—</td>
<td>100</td>
<td>130</td>
</tr>
</tbody>
</table>

NOTE.

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.

ELECTRICAL CHARACTERISTICS — continued

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow Band Functional Tests (Figure 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common-Emitter Amplifier Power Gain</td>
<td>(Q_{PE})</td>
<td>10</td>
<td>13</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Collector Efficiency</td>
<td>(\eta)</td>
<td>55</td>
<td>—</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td>Load Mismatch</td>
<td>(\psi)</td>
<td>No Degradation in Output Power</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
MRF316

The RF Line NPN Silicon Power Transistor
80W, 3.0-200MHz, 28V

Figure 1. 150 MHz Test Amplifier

C1 — 22 pF 100 mil ATC
C2, C3 — 24 pF 100 mil ATC
C4, C11 — 0.8–20 pF JMC #5501 Johanson
C5 — 200 pF 100 mil ATC
C6 — 240 pF 100 mil ATC
C7 — Dipped Mica 1000 pF
C8 — 0.1 µF Ene Red Cap
C9, C10, C12 — 30 pF 100 mil ATC
C13 — 1.0 µF Tantalum

L1 — 0.8", #20 Wire
L2 — 1.0", #20 Wire
RFC1, RFC4 — 0.15 µH Molded Coil
RFC2, RFC3 — Ferroxcube Bead 56–560–56–3B
RFC5 — 2.5", #20 Wire, 1.5 Turns
RFC6 — Ferroxcube VK200–19/4B
R1 — 10 Ω, 1/2 W
R2, R3 — 10 Ω, 1.0 W

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macomtech.com for additional data sheets and product information.

• North America Tel: 800.366.2266 / Fax: 978.366.2266
• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
• Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
The RF Line NPN Silicon Power Transistor
80W, 3.0-200MHz, 28V

TYPICAL PERFORMANCE CURVES

Figure 2. Output Power versus Input Power

![Graph showing Output Power versus Input Power at different frequencies: 30 MHz, 50 MHz, 100 MHz, 150 MHz, 200 MHz.]

Figure 3. Power Gain versus Frequency

![Graph showing Power Gain versus Frequency from 20 MHz to 220 MHz with Output Power of 80 W and Supply Voltage of 28 V.]

Figure 4. Output Power versus Supply Voltage

![Graph showing Output Power versus Supply Voltage for different values of Input Power: 2 W, 4 W, 6 W, 8 W. Frequency 100 MHz and 150 MHz are marked.]

Figure 5. Output Power versus Supply Voltage

![Graph showing Output Power versus Supply Voltage for different values of Input Power: 2 W, 4 W, 6 W, 8 W. Frequency 150 MHz is marked.]

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
The RF Line NPN Silicon Power Transistor
80W, 3.0-200MHz, 28V

Figure 6. Output Power versus Supply Voltage

Figure 7. Series Equivalent Input–Output Impedance