The RF Line NPN Silicon Power Transistor
6.0W, 1.6GHz, 28V

Designed for 28 V microwave large–signal, common base, Class C, CW amplifier applications in the range 1600 – 1640 MHz.

- Specified 28 V, 1.6 GHz Class C characteristics
 - Output power = 6 W
 - Minimum gain = 7.4 dB, @ 6 W
 - Minimum efficiency = 40% @ 6 W
- Characterized with series equivalent large–signal parameters from 1500 MHz to 1700 MHz
- Silicon nitride passivated
- Gold metalized, emitter ballasted for long life and resistance to metal migration

MAXIMUM RATINGS (Tj = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Voltage</td>
<td>VCES</td>
<td>60</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Voltage</td>
<td>VEB0</td>
<td>4.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Current</td>
<td>IC</td>
<td>1.0</td>
<td>Adc</td>
</tr>
<tr>
<td>Total Device Dissipation @ TC = 25°C</td>
<td>PD</td>
<td>26</td>
<td>Watts W/C</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>Tstg</td>
<td>–65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

| Thermal Resistance — Junction to Case (1) (2) | RJC | 6.8 | °C/W |

(1) Thermal measurement performed using CW RF operating condition.
(2) Thermal resistance is determined under specified RF operating conditions by infrared measurement techniques.
The RF Line NPN Silicon Power Transistor

6.0W, 1.6GHz, 28V

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Breakdown Voltage ($I_C = 40\ \text{mA}, V_{BE} = 0$)</td>
<td>$V_{(BR)CE}$</td>
<td>55</td>
<td></td>
<td></td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Breakdown Voltage ($I_C = 40\ \text{mA}, I_E = 0$)</td>
<td>$V_{(BR)CB}$</td>
<td>55</td>
<td></td>
<td></td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Breakdown Voltage ($I_E = 2.5\ \text{mA}, I_C = 0$)</td>
<td>$V_{(BR)EB}$</td>
<td>4.0</td>
<td></td>
<td></td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Cutoff Current ($V_{CE} = 28\ \text{Vdc}, V_{BE} = 0$)</td>
<td>I_{CES}</td>
<td></td>
<td>2.5</td>
<td></td>
<td>mA\text{dc}</td>
</tr>
</tbody>
</table>

ON CHARACTERISTICS

| DC Current Gain ($I_{CE} = 0.2\ \text{A/c}, V_{CE} = 5.0\ \text{Vdc}$) | I_{IE} | 20 | 80 | — |

DYNAMIC CHARACTERISTICS

| Output Capacitance ($V_{CE} = 28\ \text{Vdc}, f = 1.0\ \text{MHz}$) | C_{ob} | 11 | | | pf |

FUNCTIONAL TESTS

Common–Base Amplifier Power Gain ($V_{CC} = 28\ \text{Vdc}, P_{out} = 6\ \text{Watts}, f = 1600/1640\ \text{MHz}$)	G_{be}	7.4			dB
Collector Efficiency ($V_{CC} = 28\ \text{Vdc}, P_{out} = 6\ \text{Watts}, f = 1600/1640\ \text{MHz}$)	η	40	45	—	%
Return Loss ($V_{CC} = 28\ \text{Vdc}, P_{out} = 6\ \text{Watts}, f = 1600/1640\ \text{MHz}$)	L_{RL}	—	0.0	—	dB
Output Mismatch Stress ($V_{CC} = 28\ \text{Vdc}, P_{out} = 6\ \text{Watts}, f = 1600\ \text{MHz}, \text{Load YSWR} = 3:1$ all phase angles at frequency of test)	ψ	No Degradation in Output Power			
The RF Line NPN Silicon Power Transistor
6.0W, 1.6GHz, 28V

Board Material – Teflon® Glass Laminate Dielectric
Thickness – 0.30", εr = 2.55", 2.0 oz. Copper

B1 1 Fair Rite Bead on #24 Wire
C1, C5 1 00 pF, B Case, ATC Chip Cap
C2 1 0.1 μF, Dipped Mica Cap
C3 1 0.1 μF, Chip Cap
C4 1 47 μF, 50 V, Electrolytic Cap
L1, L2 3 3 Turns, #18, 0.133" ID, 0.15" Long
L3 9 9 Turns, #24 Enamel
R1 1 82 Ω, 1.0 W, Carbon Resistor

Figure 1. MRF16006 Test Fixture Schematic
The RF Line NPN Silicon Power Transistor
6.0W, 1.6GHz, 28V

<table>
<thead>
<tr>
<th>f (MHz)</th>
<th>Z_{in} (Ohms)</th>
<th>Z_{OL}^* (Ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>6.28 + j 8.53</td>
<td>1.22 – j 1.37</td>
</tr>
<tr>
<td>1600</td>
<td>7.04 + j 9.00</td>
<td>1.58 – j 0.53</td>
</tr>
<tr>
<td>1700</td>
<td>9.56 + j 12.86</td>
<td>1.71 + j 0.39</td>
</tr>
</tbody>
</table>

Z_{OL}^* = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

Figure 2. Series Equivalent Input/Output Impedance
Figure 3. Output Power versus Input Power
The RF Line NPN Silicon Power Transistor
6.0W, 1.6GHz, 28V

PACKAGE DIMENSIONS

CASE 395C-01
ISSUE A
The RF Line NPN Silicon Power Transistor
6.0W, 1.6GHz, 28V

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support