Designed primarily for linear large signal output stages to 80 MHz.

- Specified 50 volts, 30 MHz characteristics
 - Output power = 600 watts
 - Power gain = 21 dB (typ.)
 - Efficiency = 45% (typ.)

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain–Source Voltage</td>
<td>(V_{DSS})</td>
<td>125</td>
<td>(V_{dc})</td>
</tr>
<tr>
<td>Drain–Gate Voltage</td>
<td>(V_{DGD})</td>
<td>125</td>
<td>(V_{dc})</td>
</tr>
<tr>
<td>Gate–Source Voltage</td>
<td>(V_{GS})</td>
<td>40</td>
<td>(V_{dc})</td>
</tr>
<tr>
<td>Drain Current — Continuous</td>
<td>(I_D)</td>
<td>60</td>
<td>(A_{dc})</td>
</tr>
<tr>
<td>Total Device Dissipation @ (T_C = 25^\circ C)</td>
<td>(P_D)</td>
<td>1350</td>
<td>Watts</td>
</tr>
<tr>
<td>Derate above 25(^\circ)C</td>
<td></td>
<td>7.7</td>
<td>W/°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>(T_{stg})</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Junction Temperature</td>
<td>(T_J)</td>
<td>200</td>
<td>°C</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>(R_{thJC})</td>
<td>0.13</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

NOTE — CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
ELECTRICAL CHARACTERISTICS \((T_C = 25^\circ C\) unless otherwise noted)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain–Source Breakdown Voltage ((V_{DS} = 0, I_D = 100 mA))</td>
<td>(V_{GSS})</td>
<td>125</td>
<td></td>
<td></td>
<td>Vdc</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current ((V_{DS} = 50 V, V_{GS} = 0))</td>
<td>(I_DSS)</td>
<td></td>
<td>20</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Gate–Body Leakage Current ((V_{GS} = 20 V, V_{DS} = 0))</td>
<td>(I_{GSS})</td>
<td></td>
<td></td>
<td>5.0</td>
<td>(\mu)A</td>
</tr>
<tr>
<td>ON CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Threshold Voltage ((V_{DS} = 10 V, I_D = 100 mA))</td>
<td>(V_{G0(n)})</td>
<td>1.0</td>
<td>3.0</td>
<td>5.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Drain–Source On–Voltage ((V_{GS} = 10 V, I_D = 40 A))</td>
<td>(V_{DS(on)})</td>
<td>1.0</td>
<td>3.0</td>
<td>5.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Forward Transconductance ((V_{DS} = 10 V, I_D = 20 A))</td>
<td>(g_{fs})</td>
<td>16</td>
<td>24</td>
<td></td>
<td>(\text{mhos})</td>
</tr>
<tr>
<td>DYNAMIC CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Capacitance ((V_{DS} = 50 V, V_{GS} = 0 V, f = 1.0 MHz))</td>
<td>(C_{iss})</td>
<td>—</td>
<td>1800</td>
<td>—</td>
<td>(\text{pF})</td>
</tr>
<tr>
<td>Output Capacitance ((V_{DS} = 50 V, V_{GS} = 0, f = 1.0 MHz))</td>
<td>(C_{oss})</td>
<td>—</td>
<td>750</td>
<td>—</td>
<td>(\text{pF})</td>
</tr>
<tr>
<td>Reverse Transfer Capacitance ((V_{DS} = 50 V, V_{GS} = 0, f = 1.0 MHz))</td>
<td>(C_{rss})</td>
<td>—</td>
<td>75</td>
<td>—</td>
<td>(\text{pF})</td>
</tr>
<tr>
<td>FUNCTIONAL TESTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Source Amplifier Power Gain ((V_{DD} = 50 V, P_{out} = 600 W, I_{DQ} = 800 mA, f = 30 MHz))</td>
<td>(G_{ps})</td>
<td>15</td>
<td>21</td>
<td>—</td>
<td>(\text{dB})</td>
</tr>
<tr>
<td>Drain Efficiency ((V_{DD} = 50 V, P_{out} = 600 W, f = 30 MHz, I_{DQ} = 800 mA))</td>
<td>(h)</td>
<td>40</td>
<td>45</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td>Intermodulation Distortion ((V_{DD} = 50 V, P_{out} = 600 W(PEP), f_1 = 30 MHz, f_2 = 30.001 MHz, I_{DQ} = 800 mA))</td>
<td>(IMD(dB))</td>
<td>—</td>
<td>—25</td>
<td>—</td>
<td>(\text{dB})</td>
</tr>
</tbody>
</table>
MRF157

Linear RF Power MOSFET
600W, to 80MHz

Figure 1. 30 MHz Test Circuit

Figure 2. Power Gain versus Frequency

Figure 3. Output Power versus Input Power
Linear RF Power MOSFET
600W, to 80MHz

Figure 4. DC Safe Operating Area

Figure 5. Capacitance versus Drain Voltage

Figure 6. Gate Voltage versus Drain Current

Figure 7. Gate–Source Voltage versus Case Temperature

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support
Figure 8. Output Power versus Input Power Under Pulse Conditions (2 x MRF157)

Note: Pulse data for this graph was taken in a push–pull circuit similar to the one shown. However, the output matching network was modified for the higher level of peak power.

Figure 9. Thermal Response versus Pulse Width

Figure 10. Series Equivalent Impedance

Note: To determine \(Z_{OL}^* \), use formula

\[
\frac{(V_{CC} - V_{sat})^2}{2P_0} = Z_{OL}^*
\]
Figure 11. 2.0 to 50 MHz, 1.0 kW Wideband Amplifier
MRF157

Linear RF Power MOSFET
600W, to 80MHz

RF POWER MOSFET CONSIDERATIONS

MOSFET CAPACITANCES
The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (Cgd), and gate-to-source (Cgs). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain-to-source (Cds).
These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below.

Ciss can be specified in two ways:
1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

LINEARITY AND GAIN CHARACTERISTICS
In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to fT for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

DRAIN CHARACTERISTICS
One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, VDS(on), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate–source voltage and drain current. For MOSFETs, VDS(on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

GATE CHARACTERISTICS
The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 109 ohms — resulting in a leakage current of a few nanoamperes.
Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, VGS(th).

Gate Voltage Rating — Never exceed the gate voltage rating. Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region.

Gate Termination — The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection — These devices do not have an internal monolithic zener diode from gate–source. If gate protection is required, an external zener diode is recommended.

IMPEDANCE CHARACTERISTICS
Device input and output impedances are normally obtained by measuring their conjugates in an optimized narrow band test circuit. These test circuits are designed and constructed for a number of frequency points depending on the frequency coverage of characterization. For low frequencies the circuits consist of standard LC matching networks including variable capacitors for peak tuning. At increasing power levels the output impedance decreases, resulting in higher RF currents in the matching network. This makes the practicality of output impedance measurements in the manner described questionable at power levels higher than 200–300 W for devices operated at 50 V and 150–200 W for devices operated at 28 V. The physical sizes and values required for the components to withstand the RF currents increase to a point where physical construction of the output matching network gets difficult if not impossible. For this reason the output impedances are not given for high power devices such as the MRF154 and MRF157.
However, formulas like
\[
\frac{(V_{DS} - V_{Sat})^2}{2P_{out}}
\]
for a single ended design or
\[
\frac{2(V_{DS} - V_{Sat})^2}{P_{out}}
\]
used to obtain reasonably close approximations to actual values.
MOUNTING OF HIGH POWER RF POWER TRANSISTORS

The package of this device is designed for conduction cooling. It is extremely important to minimize the thermal resistance between the device flange and the heat dissipator.

Since the device mounting flange is made of soft copper, it may be deformed during various stages of handling or during transportation. It is recommended that the user makes a final inspection on this before the device installation. ±0.0005, is considered sufficient for the flange bottom.

The same applies to the heat dissipater in the device mounting area. If copper heat sink is not used, a copper head spreader is strongly recommended between the device mounting surfaces and the main heat sink. It should be at least 1/4 inch thick and extend at least one inch from the flange edges. A thin layer of thermal compound in all interfaces is, of course, essential. The recommended torque on the 4–40 mounting screws should be in the area of 4–5 lbs. –inch, and spring type lock washers along with flat washers are recommended.

For die temperature calculations, the Δ temperature from a corner mounting screw area to the bottom center of the flange is approximately 5°C and 10°C under normal operating conditions (dissipation 150 W and 300 W respectively). The main heat dissipater must be sufficiently large and have low Rth for moderate air velocity, unless liquid cooling is employed.

CIRCUIT CONSIDERATIONS

At high power levels (500 W and up), the circuit layout becomes critical due to the low impedance levels and high RF currents associated with the output matching. Some of the components, such as capacitors and inductors must also withstand these currents. The component losses are directly proportional to the operating frequency. The manufacturers specifications on capacitor ratings should be consulted on these aspects prior to design.

Push–pull circuits are less critical in general, since the ground referenced RF loops are practically eliminated, and the impedance levels are higher for a given power output. High power broadband transformers are also easier to design than comparable LC matching networks.

EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY

\[
\begin{align*}
\text{Collector} & \quad \text{Drain} \\
\text{Emitter} & \quad \text{Source} \\
\text{Base} & \quad \text{Gate} \\
V_{BR(CES)} & \quad V_{BR(DSS)} \\
V_{CEO} & \quad V_{DGO} \\
I_C & \quad I_D \\
I_{CES} & \quad I_{DSS} \\
I_{EBO} & \quad I_{GSS} \\
V_{BE(on)} & \quad V_{GS(th)} \\
V_{CE(sat)} & \quad V_{DS(on)} \\
C_{ilb} & \quad C_{igg} \\
C_{ob} & \quad C_{oss} \\
h_f & \quad \eta_f \\
R_{CE(sat)} & = \frac{V_{CE(sat)}}{I_C} \\
R_{DS(on)} & = \frac{V_{DS(on)}}{I_D}
\end{align*}
\]
M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.