Designed primarily for linear large signal output stages in the 2.0 to 100 MHz frequency range.

N–Channel enhancement mode MOSFET

- Specified 50 volts, 30 MHz characteristics
 - Output power = 600 watts
 - Power gain = 17 dB (typ.)
 - Efficiency = 45% (typ.)

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain–Source Voltage</td>
<td>V_{DSS}</td>
<td>125</td>
<td>Vdc</td>
</tr>
<tr>
<td>Drain–Gate Voltage</td>
<td>V_{DGO}</td>
<td>125</td>
<td>Vdc</td>
</tr>
<tr>
<td>Gate–Source Voltage</td>
<td>V_{GS}</td>
<td>±40</td>
<td>Vdc</td>
</tr>
<tr>
<td>Drain Current — Continuous</td>
<td>I_D</td>
<td>60</td>
<td>Adc</td>
</tr>
<tr>
<td>Total Device Dissipation @ $T_C = 25^\circ C$</td>
<td>P_D</td>
<td>1350</td>
<td>Watts</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td>7.7</td>
<td>W/°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{SLG}</td>
<td>–65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Junction Temperature</td>
<td>T_J</td>
<td>200</td>
<td>°C</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>R_{BJC}</td>
<td>0.13</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain–Source Breakdown Voltage ($V_{GS} = 0$, $I_D = 100$ mA)</td>
<td>$V_{(BR)DSS}$</td>
<td>125</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current ($V_{DS} = 50$ V, $V_{GS} = 0$)</td>
<td>I_{DSS}</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Gate–Body Leakage Current ($V_{GS} = 20$ V, $V_{DS} = 0$)</td>
<td>I_{GSS}</td>
<td>—</td>
<td>—</td>
<td>5.0</td>
<td>µA</td>
</tr>
<tr>
<td>Gate Threshold Voltage ($V_{DS} = 10$ V, $I_D = 100$ mA)</td>
<td>$V_{G(th)}$</td>
<td>1.0</td>
<td>3.0</td>
<td>5.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Drain–Source On-Voltage ($V_{GS} = 10$ V, $I_D = 40$ A)</td>
<td>$V_{DS(on)}$</td>
<td>1.0</td>
<td>3.0</td>
<td>5.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Forward Transconductance ($V_{DS} = 10$ V, $I_D = 20$ A)</td>
<td>g_{fs}</td>
<td>16</td>
<td>20</td>
<td>—</td>
<td>mhos</td>
</tr>
<tr>
<td>Input Capacitance ($V_{DS} = 50$ V, $V_{GS} = 0$, $f = 1.0$ MHz)</td>
<td>C_{iss}</td>
<td>—</td>
<td>1600</td>
<td>—</td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance ($V_{DS} = 50$ V, $V_{GS} = 0$, $f = 1.0$ MHz)</td>
<td>C_{oss}</td>
<td>—</td>
<td>950</td>
<td>—</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse Transfer Capacitance ($V_{DS} = 50$ V, $V_{GS} = 0$, $f = 1.0$ MHz)</td>
<td>C_{rss}</td>
<td>—</td>
<td>175</td>
<td>—</td>
<td>pF</td>
</tr>
<tr>
<td>Common Source Amplifier Power Gain</td>
<td>G_{ps}</td>
<td>—</td>
<td>17</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Drain Efficiency</td>
<td>η</td>
<td>—</td>
<td>45</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td>Intermodulation Distortion</td>
<td>$IMD(d3)$</td>
<td>—</td>
<td>−25</td>
<td>—</td>
<td>dB</td>
</tr>
</tbody>
</table>
MRF154

Broadband RF Power MOSFET
600W, to 80MHz, 50V

Rev. V1

C1, C3, C8 — Arco 469
C2 — 330 pF
C4 — 680 pF
C5, C19, C20 — 0.47 µF, RMC Type 2225C
C6, C7, C14, C15, C16 — 0.1 µF
C9, C10, C11 — 470 pF
C12 — 1000 pF
C13 — Two Unencapsulated 1000 pF Mica, in Series
C17, C18 — 0.039 µF
C21 — 10 µF/100 V Electrolytic
L1 — 2 Turns #16 AWG, 1/2" ID, 3/8" Long
L2, L3 — Ferrite Beads, Fair-Rite Products Corp. #2673000801

R1, R2 — 10 Ohms/2.0 W Carbon
T1 — RF Transformer, 1:25 Impedance Ratio. See M/A-COM Application Note AN749, Figure 4 for details.
Ferrite Material: 2 Each, Fair-Rite Products Corp. #2667540301

All capacitors ATC type 100/200 chips or equivalent unless otherwise noted.

Figure 1. 30 MHz Test Circuit

Figure 2. Power Gain versus Frequency

Figure 3. Output Power versus Input Power

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
MRF154

Broadband RF Power MOSFET
600W, to 80MHz, 50V

Figure 4. DC Safe Operating Area

Figure 5. Capacitance versus Drain Voltage

Figure 6. Gate Voltage versus Drain Current

Figure 7. Common Source Unity Gain Frequency versus Drain Current

For further information and support please visit:
https://www.macom.com/support
Figure 8. Series Equivalent Impedance
MRF154

Broadband RF Power MOSFET
600W, to 80MHz, 50V

Rev. V1

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support

C1 — 1000 pF Ceramic
C2, C3, C4, C6, C9, C10, C11 — 0.1 μF Ceramic
C5 — 10 μF/100 V Electrolytic
C6, C7 — 0.1 μF Ceramic, (ATC 200/623 or Equivalent)
D1 — 28 V Zener; 1N5362 or Equivalent
D3 — 1N4148
IC1 — MC1723
L1, L2 — Fair-Rite Products Corp. Ferrite Beads
#2673000801
R1, R2, R3 — 10 k Trimpot
R4 — 1.0 k/1.0 W
R5 — 10 Ohms
R6 — 2.0 k
R7 — 10 k
R8 — Thermistor, 10 k (25°C), 2.5 k (75°C)
R9, R10 — 100 Ohms
R11, R12 — 1.0 k
R13, R14 — 50 – 100 Ohms, 4.0 x 2.0 W Carbon in Parallel
T1 — 9:1 Transformer, Triax and Balun Wound on Separate
Fair-Rite Products Corp. Balun Cores #286100012, 5 Turns Each
T2 — 1:9 Transformer, Balun 50 Ohm CO-AX Cable RG-188,
Low Impedance Lines W/L. Gore 16 Ohms CO-AX Type CNX 1837.
Each Winding Threaded Through Two Fair-Rite Products Corp.
#2661540001 Ferrite Sleeves (6 Each).
XTR — MRF154

Figure 9. 20-80 MHz 1.0 kW Broadband Amplifier
RF POWER MOSFET CONSIDERATIONS

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (Cgd), and gate-to-source (Cgs). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain-to-source (Cds).

These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The

Ciss can be specified in two ways:
1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

![Diagram of MOSFET capacitances](image)

Gate Characteristics

The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 109 ohms — resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, VGS(th).

Gate Voltage Rating — Never exceed the gate voltage rating. Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region.

Gate Termination — The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection — These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.

MOUNTING OF HIGH POWER RF POWER TRANSISTORS

The package of this device is designed for conduction cooling. It is extremely important to minimize the thermal resistance between the device flange and the heat dissipator.

Since the device mounting flange is made of soft copper, it may be deformed during various stages of handling or during transportation. It is recommended that the user makes a final inspection on this before the device installation. ±0.0005, is considered sufficient for the flange bottom. The same applies to the heat dissipator in the device mounting area. If copper heatsink is not used, a copper head spreader is strongly recommended between the device mounting surfaces and the main heatsink. It should be at least 1/4, thick and extend at least one inch from the flange edges. A thin layer of thermal compound in all interfaces is, of course, essential. The recommended torque on the 4–40 mounting screws should be in the area of 4–5 lbs. –inch, and spring type lock washers along with flat washers are recommended.

For die temperature calculations, the Δ temperature from a corner mounting screw area to the bottom center of the flange is approximately 5°C and 10°C under normal operating conditions (dissipation 150 W and 300 W respectively). The main heat dissipater must be sufficiently large and have low Rθ for moderate air velocity, unless liquid cooling is employed.
CIRCUIT CONSIDERATIONS
At high power levels (500 W and up), the circuit layout becomes critical due to the low impedance levels and high RF currents associated with the output matching. Some of the components, such as capacitors and inductors must also withstand these currents. The component losses are directly proportional to the operating frequency. The manufacturers specifications on capacitor ratings should be consulted on these aspects prior to design. Push–pull circuits are less critical in general, since the ground referenced RF loops are practically eliminated, and the impedance levels are higher for a given power output. High power broadband transformers are also easier to design than comparable LC matching networks.

EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector</td>
<td>Drain</td>
</tr>
<tr>
<td>Emitter</td>
<td>Source</td>
</tr>
<tr>
<td>Base</td>
<td>Gate</td>
</tr>
<tr>
<td>V(BR)CES</td>
<td>V(BR)DSS</td>
</tr>
<tr>
<td>VCEO</td>
<td>VCEO</td>
</tr>
<tr>
<td>IC</td>
<td>ID</td>
</tr>
<tr>
<td>ICES</td>
<td>IDS</td>
</tr>
<tr>
<td>IEB</td>
<td>IGSS</td>
</tr>
<tr>
<td>VBE(on)</td>
<td>VGS(th)</td>
</tr>
<tr>
<td>VCE(sat)</td>
<td>VDS(on)</td>
</tr>
<tr>
<td>Cbb</td>
<td>Ciss</td>
</tr>
<tr>
<td>Cob</td>
<td>Coss</td>
</tr>
<tr>
<td>RCE(sat) = \frac{VCE(sat)}{IC}</td>
<td>RDS(on) = \frac{VDS(on)}{ID}</td>
</tr>
</tbody>
</table>
PACKAGE DIMENSIONS

CASE 368-03
ISSUE C