RF Power Field-Effect Transistor
150 W, 50 V, 175 MHz N-Channel Broadband MOSFET

Features
Guaranteed Performance at 30 MHz, 50 V:
- Output Power — 150 W
- Gain — 18 dB (22 dB Typ)
- Efficiency — 40%

Typical Performance at 175 MHz, 50 V:
- Output Power — 150 W
- Gain — 13 dB
- Low Thermal Resistance
- Ruggedness Tested at Rated Output Power
- Nitride Passivated Die for Enhanced Reliability

Description and Applications
Designed for broadband commercial and military applications at frequencies to 175 MHz. The high power, high gain and broadband performance of this device makes possible solid state transmitters for FM broadcast or TV channel frequency bands.

Package Outline

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain–Source Voltage</td>
<td>VDSS</td>
<td>125</td>
<td>Vdc</td>
</tr>
<tr>
<td>Drain–Gate Voltage</td>
<td>VDGO</td>
<td>125</td>
<td>Vdc</td>
</tr>
<tr>
<td>Gate–Source Voltage</td>
<td>VGs</td>
<td>±40</td>
<td>Vdc</td>
</tr>
<tr>
<td>Drain Current — Continuous</td>
<td>ID</td>
<td>16</td>
<td>Adc</td>
</tr>
<tr>
<td>Total Device Dissipation @ Tc = 25°C</td>
<td>Pd</td>
<td>300</td>
<td>Watts</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td>1.71</td>
<td>W/°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>Tstg</td>
<td>−65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Junction Temperature</td>
<td>TJ</td>
<td>200</td>
<td>°C</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>RWJC</td>
<td>0.6</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

NOTE — CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
MRF151

RF Power Field-Effect Transistor

150 W, 50 V, 175 MHz N-Channel Broadband MOSFET

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain-Source Breakdown Voltage (Vgs = 0, Ig = 100 mA)</td>
<td>VGS(Off)</td>
<td>125</td>
<td></td>
<td></td>
<td>Vdc</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current (Vgs = 50 V, Vds = 0)</td>
<td>IDSS</td>
<td></td>
<td>5.0</td>
<td></td>
<td>mAdc</td>
</tr>
<tr>
<td>Gate-Body Leakage Current (Vgs = 30 V, Vds = 0)</td>
<td>ISBS</td>
<td></td>
<td>1.0</td>
<td></td>
<td>μAdc</td>
</tr>
<tr>
<td>ON CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-Source On-Voltage (Vgs = 10 V, Ig = 10 A)</td>
<td>VD(Gon)</td>
<td>1.0</td>
<td>3.0</td>
<td>5.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Drain-Source On-Voltage (Vgs = 10 V, Vds = 0)</td>
<td>VD(Son)</td>
<td>1.0</td>
<td>3.0</td>
<td>5.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Forward Transconductance (Vgs = 10 V, Ig = 5.0 A)</td>
<td>gfs</td>
<td>5.0</td>
<td>7.0</td>
<td></td>
<td>mhos</td>
</tr>
<tr>
<td>DYNAMIC CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Capacitance (Vgs = 50 V, Vds = 0, f = 1.0 MHz)</td>
<td>Ciss</td>
<td></td>
<td>350</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance (Vds = 50 V, Vgs = 0, f = 1.0 MHz)</td>
<td>Coss</td>
<td></td>
<td>220</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Reverse Transfer Capacitance (Vgs = 50 V, Vds = 0, f = 1.0 MHz)</td>
<td>CRss</td>
<td></td>
<td>15</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>FUNCTIONAL TESTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Source Amplifier Power Gain, f = 30, 30.001 MHz (Vdd = 50 V, Pout = 150 W (PEP), Vgs = 250 mA)</td>
<td>GSPD</td>
<td>15</td>
<td>22</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Drain Efficiency, f = 30, 30.001 MHz (Vdd = 50 V, Pout = 150 W (PEP), Ig (Max) = 5.75 A)</td>
<td>η</td>
<td>40</td>
<td>45</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Intermodulation Distortion (1) f = 30 MHz, (f2 = 30.001 MHz, I GS = 50 mA)</td>
<td>IMD(30)</td>
<td></td>
<td></td>
<td>32</td>
<td>dB</td>
</tr>
<tr>
<td>Load Match, f = 30, 30.001 MHz, VGS=250 mA, VSWR: 30:1 at all Phase Angles</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>No Degradation in Output Power</td>
</tr>
<tr>
<td>CLASS A PERFORMANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermodulation Distortion (1) and Power Gain, f = 30 MHz, I GS = 50 mA,</td>
<td>GSPD</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>IMD(30)</td>
<td>IMD(0,13)</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
</tbody>
</table>

NOTE:

Diagram

![30 MHz Test Circuit](https://www.macom.com/sup...)

- C1 — 470 pF Capacitor
- C2, C6, C7, C8, C9 = 0.1 μF Ceramic Chip or Monolithic with Short Leads
- C3 — 200 μF Monolithic with Short Leads
- C4 — 15 μF Monolithic with Short Leads
- C10 — 10 μF 100 V Electrolytic
- L1 — YAGE045 Ferrite Choke or Equivalent, 3.0 μH
- L2 — Ferrite Bead (A), 2.0 μH
- R1, R2 — 51 Ω, 1.0 W Carbons
- R3 — 330 μF 1.0 W Carbon (or 2 x 6.8 μF/12 W in Parallel)
- T1 — 0.1 Bandwidth Transformer
- T2 — 3.3 Bandwidth Transformer
- Board Material — 0.062" Fiberglass (G10), 1 oz. Copper Clad, 2 Sides, εr = 5

Figure 1. 30 MHz Test Circuit
RF Power Field-Effect Transistor
150 W, 50 V, 175 MHz N-Channel Broadband MOSFET

Figure 2. 175 MHz Test Circuit

TYPICAL CHARACTERISTICS

Figure 3. Capacitance versus Drain-Source Voltage

Figure 4. Gate-Source Voltage versus Case Temperature
RF Power Field-Effect Transistor
150 W, 50 V, 175 MHz N-Channel Broadband MOSFET

TYPICAL CHARACTERISTICS

Figure 5. DC Safe Operating Area

Figure 6. Common Source Unity Gain Frequency versus Drain Current

Figure 7. Power Gain versus Frequency

Figure 8. Output Power versus Input Power

Figure 9. IMD versus P_out

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support
Table 1. Common Source S-Parameters (VDS = 50 V, ID = 2 A)

f MHz	S11		S21		S12		S22						
30	0.977	-174	15.10	77	0.005	19	0.707	-169					
40	0.966	-175	7.47	69	0.009	24	0.715	-172					
50	0.965	-175	5.76	83	0.008	33	0.756	-174					
60	0.962	-176	4.73	50	0.008	38	0.764	-171					
70	0.912	-176	3.86	52	0.009	46	0.784	-172					
80	0.910	-177	3.15	48	0.010	54	0.787	-173					
90	0.925	-177	2.69	45	0.011	62	0.808	-172					
100	0.932	-177	2.34	40	0.013	67	0.850	-173					
110	0.936	-178	2.06	37	0.014	72	0.865	-173					
120	0.942	-179	1.77	35	0.016	76	0.874	-172					
130	0.946	-179	1.55	32	0.017	77	0.874	-172					
140	0.950	-179	1.32	30	0.019	77	0.884	-174					
150	0.954	-180	1.23	27	0.021	78	0.909	-175					
160	0.957	-180	1.13	24	0.023	79	0.911	-175					
170	0.960	-180	1.01	22	0.024	82	0.924	-177					
180	0.962	-179	0.90	20	0.026	82	0.931	-175					
190	0.964	-179	0.84	19	0.026	82	0.939	-175					
200	0.967	-178	0.75	18	0.030	79	0.922	-179					
210	0.967	-178	0.71	18	0.032	80	0.937	-180					
220	0.969	-178	0.67	14	0.036	82	0.949	-180					
230	0.971	-178	0.60	12	0.036	81	0.950	-175					
240	0.970	-177	0.57	12	0.037	80	0.950	-175					
f MHz		$	S_{11}	$	$	S_{21}	$	$	S_{12}	$	$	S_{22}	$
-------	----------	----------	----------	----------	----------								
250	0.972	0.51	0.039	0.935	179								
260	0.973	0.47	0.041	0.954	178								
270	0.972	0.45	0.044	0.953	176								
280	0.974	0.41	0.046	0.965	175								
290	0.974	0.40	0.046	0.944	175								
300	0.975	0.39	0.048	0.929	176								
310	0.976	0.36	0.049	0.943	176								
320	0.974	0.33	0.053	0.954	176								
330	0.975	0.31	0.056	0.935	172								
340	0.976	0.30	0.056	0.948	172								
350	0.975	0.29	0.058	0.950	174								
360	0.977	0.28	0.059	0.978	172								
370	0.976	0.26	0.061	0.981	170								
380	0.976	0.26	0.065	0.944	171								
390	0.977	0.24	0.066	0.960	171								
400	0.976	0.23	0.068	0.955	173								
410	0.976	0.22	0.071	0.999	170								
420	0.977	0.21	0.071	0.962	168								
430	0.976	0.19	0.073	0.950	168								
440	0.976	0.20	0.075	0.953	168								
450	0.978	0.19	0.080	0.982	168								
460	0.978	0.18	0.082	0.990	165								
470	0.978	0.18	0.081	0.953	168								
480	0.974	0.18	0.085	0.944	167								
490	0.973	0.17	0.086	0.966	165								
500	0.972	0.17	0.089	0.980	165								
RF POWER MOSFET CONSIDERATIONS

MOSFET CAPACITANCES
The physical structure of a MOSFET results in capacitors between the terminals. The metal anode gate structure determines the capacitors from gate–to–drain (C_{gd}) and gate–to–source (C_{gs}). The PN junction formed during the fabrication of the MOSFET results in a junction capacitance from drain-to-source (C_{ds}). These capacitances are characterized as input (C_{gs}), output (C_{gd}), and reverse transfer (C_{gd}) capacitances on data sheets. The relationships between the inter- and terminal capacitances and those given on data sheets are shown below. The C_{gd} can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower.

However, neither method represents the actual operating conditions in RF applications.

LINEARITY AND GAIN CHARACTERISTICS
In addition to the typical IMD and power gain data presented, Figure 6 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity gain frequency at a given drain current level. This is equivalent to f_T for bipolar transistors.

DRAIN CHARACTERISTICS
One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $R_{ON(mw)}$, occurs in the linear region of the output characteristic and is specified under specific test conditions for 50-ohm voltage and drain current. For MOSFETs, $R_{ON(mw)}$ has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

GATE CHARACTERISTICS
The gate of the MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 10^6 ohms. resulting in a leakage current of a few nanoamperes. Gate control is achieved by applying a positive voltage slightly in excess of the gate–to–source threshold voltage, $V_{GS(th)}$.

Gate Voltage Rating — Never exceed the gate voltage rating. Exceeding the rated V_{GS} can result in permanent damage to the oxide layer in the gate region.

Gate Termination — The gate of this device is essentially capacitive. Circuits that leave the gate open–circuit or floating should be avoided. These conditions can result in turn-on of the device due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection — This device does not have an internal monolithic zener diode from gate–to–source. If gate protection is required, an external zener diode is recommended.

Using a resistor to keep the gate–to–source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate–drain capacitance. If the gate–to–source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate–threshold voltage and turn the device on.

HANDLING CONSIDERATIONS
When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear ground straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with a grounded iron.

DESIGN CONSIDERATIONS
The MRF151 is an RF Power, MOS, N-channel enhancement mode field–effect transistor (FET) designed for RF and VHF power amplifier applications.

DC BIAS
The MRF151 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (I_{DSS}) is not critical for many applications. The MRF151 was characterized at $I_{DSS} = 250$ mA, each side, which is the suggested minimum value of I_{DSS}. For special applications such as linear amplification, I_{DSS} may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistor divider network. Some applications may require a more elaborate bias system.

GAIN CONTROL
Power output of the MRF151 may be controlled from its rated voltage down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems.
MRF151

RF Power Field-Effect Transistor
150 W, 50 V, 175 MHz N-Channel Broadband MOSFET

Rev. V1

Unless otherwise noted, tolerances are inches ±0.005" [millimeters ±0.13mm].

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support
RF Power Field-Effect Transistor
150 W, 50 V, 175 MHz N-Channel Broadband MOSFET

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
MRF151

RF Power Field-Effect Transistor
150 W, 50 V, 175 MHz N-Channel Broadband MOSFET

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support