MRF141G

RF Power FET
300W, 175MHz, 28V

Designed for broadband commercial and military applications at frequencies to 175 MHz. The high power, high gain and broadband performance of this device is especially useful for FM broadcast or TV channel frequency band solid state transmitters and amplifiers.

- Guaranteed performance at 175MHz, 28V:
 - Output power: 300W
 - Gain: 12dB (14dB Typ.)
 - Efficiency: 50%

- Low thermal resistance: 0.35°C/W
- Ruggedness tested at rated output power
- Nitride passivated die for enhanced reliability

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM").

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain–Source Voltage</td>
<td>VDSS</td>
<td>65 Vdc</td>
<td></td>
</tr>
<tr>
<td>Drain–Gate Voltage</td>
<td>VDGO</td>
<td>65 Vdc</td>
<td></td>
</tr>
<tr>
<td>Gate–Source Voltage</td>
<td>VGS</td>
<td>±40 Vdc</td>
<td></td>
</tr>
<tr>
<td>Drain Current — Continuous</td>
<td>ID</td>
<td>32 Adc</td>
<td></td>
</tr>
<tr>
<td>Total Device Dissipation @ TC = 25°C</td>
<td>PD</td>
<td>500 Watts</td>
<td>2.85 W/^°C</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>TSTG</td>
<td>−65 to +150 °C</td>
<td></td>
</tr>
<tr>
<td>Operating Junction Temperature</td>
<td>TJ</td>
<td>200 °C</td>
<td></td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>RthJC</td>
<td>0.35</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

NOTE — CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

Customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.
ELECTRICAL CHARACTERISTICS \(\left(T_C = 25^\circ\text{C unless otherwise noted} \right) \)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF CHARACTERISTICS (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain–Source Breakdown Voltage (V_{GS} = 0, I_D = 100 \text{ mA})</td>
<td>(V_{BRS,DSS})</td>
<td>65</td>
<td></td>
<td></td>
<td>Vdc</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current (V_{GS} = 28 \text{ V}, V_{DS} = 0)</td>
<td>(I_{DSS})</td>
<td>—</td>
<td>—</td>
<td>5.0</td>
<td>mAdc</td>
</tr>
<tr>
<td>Gate–Body Leakage Current (V_{GS} = 20 \text{ V}, V_{DS} = 0)</td>
<td>(I_{BS})</td>
<td>—</td>
<td>—</td>
<td>1.0</td>
<td>(\mu\text{A}dc)</td>
</tr>
<tr>
<td>ON CHARACTERISTICS (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Threshold Voltage (V_{DS} = 10 \text{ V}, I_{D} = 100 \text{ mA})</td>
<td>(V_{GSO(\text{on})})</td>
<td>1.0</td>
<td>3.0</td>
<td>5.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Drain–Source On-Voltage (V_{DS} = 10 \text{ V}, I_{D} = 10 \text{ A})</td>
<td>(V_{DSS(\text{on})})</td>
<td>0.1</td>
<td>0.9</td>
<td>1.5</td>
<td>Vdc</td>
</tr>
<tr>
<td>Forward Transconductance (V_{DS} = 10 \text{ V}, I_{D} = 5.0 \text{ A})</td>
<td>(g_{FS})</td>
<td>5.0</td>
<td>7.0</td>
<td>—</td>
<td>mhos</td>
</tr>
<tr>
<td>DYNAMIC CHARACTERISTICS (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Capacitance (V_{DS} = 28 \text{ V}, V_{DS} = 0, f = 1.0 \text{ MHz})</td>
<td>(C_{iss})</td>
<td>—</td>
<td>350</td>
<td>—</td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance (V_{DS} = 28 \text{ V}, V_{DS} = 0, f = 1.0 \text{ MHz})</td>
<td>(C_{oss})</td>
<td>—</td>
<td>420</td>
<td>—</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse Transfer Capacitance (V_{DS} = 28 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz})</td>
<td>(C_{iss})</td>
<td>—</td>
<td>35</td>
<td>—</td>
<td>pF</td>
</tr>
</tbody>
</table>

FUNCTIONAL TESTS (2)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Source Amplifier Power Gain (V_{CD} = 28 \text{ V}, P_{out} = 300 \text{ W}, I_{D(DC)} = 600 \text{ mA}, f = 175 \text{ MHz})</td>
<td>(G_{PS})</td>
<td>12</td>
<td>14</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Drain Efficiency (V_{CD} = 28 \text{ V}, P_{out} = 300 \text{ W}, f = 175 \text{ MHz}, I_{D(DC)} \text{ (Max)} = 21.4 \text{ A})</td>
<td>(\eta)</td>
<td>45</td>
<td>55</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td>Load Mismatch (V_{CD} = 28 \text{ V}, P_{out} = 300 \text{ W}, I_{D(DC)} = 600 \text{ mA}, f = 175 \text{ MHz}, Y_{SWR} 5:1 \text{ at all Phase Angles})</td>
<td>(\psi)</td>
<td>No Degradation in Output Power</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Each side measured separately.
2. Measurement in each full configuration.

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHTS. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.
RF Power FET
300W, 175MHz, 28V

C1 — Arco 402, 1.5–20 pF
C2 — Arco 406, 15–115 pF
C3, C4, C8, C9, C10 — 1000 pF Chip
C5, C11 — 0.1 µF Chip
C6 — 330 pF Chip
C7 — 200 pF and 180 pF Chips in Parallel
C12 — 0.47 µF Ceramic Chip, Kemet 1215 or Equivalent
C13 — Arco 403, 3.0–35 pF
L1 — 10 Turns AWG #16 Enamede Wire,
 Close Wound, 1/4” I.D.
L2 — Ferrite Beads of Suitable Material for
 1.5–2.0 µH Total Inductance
R1 — 100 Ohms, 1/2 W
R2 — 1.0 kOhm, 1/2 W

T1 — 9:1 RF Transformer. Can be made of 15–18 Ohms
 Semrigrd Co-Ax, 62–90 Mils O.D.
T2 — 1:9 RF Transformer. Can be made of 15–18 Ohms
 Semrigrd Co-Ax, 70–90 Mils O.D.

Board Material — 0.062” Fiberglass (G10),
1 oz. Copper Clad, 2 Sides, εr = 5

NOTE: For stability, the input transformer T1 must be loaded
 with ferrite toroids or beads to increase the common
 mode inductance. For operation below 100 MHz. The
 same is required for the output transformer.

See pictures for construction details.

Figure 1. 175 MHz Test Circuit

WARRANTIES RELATING TO THIS PRODUCT ARE LIMITED TO THE REPAIR OR REPLACEMENT, AT MACOM’S OPTION, OF DEFECTIVE PRODUCT. MACOM MAKES NO OTHER EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTY OF MERCHANTABILITY OR NON-INFRINGEMENT, WITH RESPECT TO ANY PRODUCTS SOLD BY MACOM. IN NO EVENT SHALL MACOM BE LIABLE FOR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR OTHERWISE, ARISING OUT OF OR RELATED TO THE USE OR PERFORMANCE OF PRODUCT OR ANY OTHER PRODUCTS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.
MACOM technology solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support
RF Power FET
300W, 175MHz, 28V

Rev. V1

Figure 6. Power Gain versus Frequency

Figure 7. Output Power versus Supply Voltage

Figure 8. Input and Output Impedances

customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.
RF Power FET
MRF141G

300W, 175MHz, 28V

NOTE: S-Parameter data represents measurements taken from one chip only.

Table 1. Common Source S-Parameters ($V_{DS} = 24$ V, $I_{D} = 0.57$ A)

<table>
<thead>
<tr>
<th>f (MHz)</th>
<th>S_{11}</th>
<th>S_{21}</th>
<th>S_{12}</th>
<th>S_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td>S_{11}</td>
<td>$</td>
<td>$\angle \phi$</td>
</tr>
<tr>
<td>30</td>
<td>0.845</td>
<td>−174</td>
<td>4.93</td>
<td>70</td>
</tr>
<tr>
<td>40</td>
<td>0.867</td>
<td>−174</td>
<td>3.23</td>
<td>66</td>
</tr>
<tr>
<td>50</td>
<td>0.876</td>
<td>−174</td>
<td>2.62</td>
<td>62</td>
</tr>
<tr>
<td>60</td>
<td>0.883</td>
<td>−174</td>
<td>2.12</td>
<td>59</td>
</tr>
<tr>
<td>70</td>
<td>0.890</td>
<td>−175</td>
<td>1.85</td>
<td>58</td>
</tr>
<tr>
<td>80</td>
<td>0.909</td>
<td>−175</td>
<td>1.57</td>
<td>56</td>
</tr>
<tr>
<td>90</td>
<td>0.900</td>
<td>−175</td>
<td>1.35</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>0.920</td>
<td>−176</td>
<td>1.13</td>
<td>43</td>
</tr>
<tr>
<td>110</td>
<td>0.930</td>
<td>−176</td>
<td>0.95</td>
<td>37</td>
</tr>
<tr>
<td>120</td>
<td>0.938</td>
<td>−176</td>
<td>0.78</td>
<td>33</td>
</tr>
<tr>
<td>130</td>
<td>0.944</td>
<td>−176</td>
<td>0.67</td>
<td>31</td>
</tr>
<tr>
<td>140</td>
<td>0.948</td>
<td>−177</td>
<td>0.60</td>
<td>31</td>
</tr>
<tr>
<td>150</td>
<td>0.951</td>
<td>−177</td>
<td>0.56</td>
<td>32</td>
</tr>
<tr>
<td>160</td>
<td>0.954</td>
<td>−178</td>
<td>0.52</td>
<td>32</td>
</tr>
<tr>
<td>170</td>
<td>0.958</td>
<td>−178</td>
<td>0.48</td>
<td>29</td>
</tr>
<tr>
<td>180</td>
<td>0.962</td>
<td>−178</td>
<td>0.45</td>
<td>24</td>
</tr>
<tr>
<td>190</td>
<td>0.965</td>
<td>−179</td>
<td>0.40</td>
<td>17</td>
</tr>
<tr>
<td>200</td>
<td>0.968</td>
<td>−179</td>
<td>0.34</td>
<td>15</td>
</tr>
<tr>
<td>210</td>
<td>0.970</td>
<td>−179</td>
<td>0.30</td>
<td>15</td>
</tr>
<tr>
<td>220</td>
<td>0.972</td>
<td>−180</td>
<td>0.27</td>
<td>15</td>
</tr>
<tr>
<td>230</td>
<td>0.973</td>
<td>−180</td>
<td>0.25</td>
<td>17</td>
</tr>
<tr>
<td>240</td>
<td>0.974</td>
<td>180</td>
<td>0.24</td>
<td>20</td>
</tr>
<tr>
<td>250</td>
<td>0.975</td>
<td>180</td>
<td>0.24</td>
<td>19</td>
</tr>
<tr>
<td>260</td>
<td>0.977</td>
<td>179</td>
<td>0.21</td>
<td>17</td>
</tr>
<tr>
<td>270</td>
<td>0.978</td>
<td>179</td>
<td>0.22</td>
<td>13</td>
</tr>
<tr>
<td>280</td>
<td>0.979</td>
<td>179</td>
<td>0.19</td>
<td>13</td>
</tr>
<tr>
<td>290</td>
<td>0.979</td>
<td>178</td>
<td>0.17</td>
<td>13</td>
</tr>
</tbody>
</table>

THESE MATERIALS: MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

For further information and support please visit:
https://www.macom.com/support
Table 1. Common Source S–Parameters (V_{DS} = 24 V, I_{D} = 0.57 A) (continued)

<table>
<thead>
<tr>
<th>f MHz</th>
<th>S_{11}</th>
<th>S_{21}</th>
<th>S_{12}</th>
<th>S_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td>S_{11}</td>
<td>$</td>
<td>$\angle \phi$</td>
</tr>
<tr>
<td>300</td>
<td>0.560</td>
<td>178</td>
<td>0.16</td>
<td>8</td>
</tr>
<tr>
<td>310</td>
<td>0.560</td>
<td>178</td>
<td>0.16</td>
<td>13</td>
</tr>
<tr>
<td>320</td>
<td>0.961</td>
<td>178</td>
<td>0.16</td>
<td>15</td>
</tr>
<tr>
<td>330</td>
<td>0.962</td>
<td>177</td>
<td>0.13</td>
<td>10</td>
</tr>
<tr>
<td>340</td>
<td>0.982</td>
<td>177</td>
<td>0.15</td>
<td>19</td>
</tr>
<tr>
<td>350</td>
<td>0.982</td>
<td>177</td>
<td>0.13</td>
<td>16</td>
</tr>
<tr>
<td>360</td>
<td>0.983</td>
<td>177</td>
<td>0.13</td>
<td>10</td>
</tr>
<tr>
<td>370</td>
<td>0.982</td>
<td>176</td>
<td>0.10</td>
<td>7</td>
</tr>
<tr>
<td>380</td>
<td>0.982</td>
<td>176</td>
<td>0.10</td>
<td>7</td>
</tr>
<tr>
<td>390</td>
<td>0.982</td>
<td>176</td>
<td>0.10</td>
<td>10</td>
</tr>
<tr>
<td>400</td>
<td>0.982</td>
<td>175</td>
<td>0.09</td>
<td>14</td>
</tr>
<tr>
<td>410</td>
<td>0.983</td>
<td>175</td>
<td>0.10</td>
<td>12</td>
</tr>
<tr>
<td>420</td>
<td>0.983</td>
<td>175</td>
<td>0.09</td>
<td>16</td>
</tr>
<tr>
<td>430</td>
<td>0.984</td>
<td>175</td>
<td>0.09</td>
<td>15</td>
</tr>
<tr>
<td>440</td>
<td>0.983</td>
<td>174</td>
<td>0.09</td>
<td>12</td>
</tr>
<tr>
<td>450</td>
<td>0.983</td>
<td>174</td>
<td>0.09</td>
<td>13</td>
</tr>
<tr>
<td>460</td>
<td>0.983</td>
<td>174</td>
<td>0.07</td>
<td>14</td>
</tr>
<tr>
<td>470</td>
<td>0.983</td>
<td>174</td>
<td>0.07</td>
<td>13</td>
</tr>
<tr>
<td>480</td>
<td>0.983</td>
<td>174</td>
<td>0.07</td>
<td>16</td>
</tr>
<tr>
<td>490</td>
<td>0.984</td>
<td>173</td>
<td>0.07</td>
<td>13</td>
</tr>
<tr>
<td>500</td>
<td>0.984</td>
<td>173</td>
<td>0.07</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 2. Common Source S–Parameters (V_{DS} = 28 V, I_{D} = 0.85 A)

<table>
<thead>
<tr>
<th>f MHz</th>
<th>S_{11}</th>
<th>S_{21}</th>
<th>S_{12}</th>
<th>S_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td>S_{11}</td>
<td>$</td>
<td>$\angle \phi$</td>
</tr>
<tr>
<td>30</td>
<td>0.494</td>
<td>-174</td>
<td>5.41</td>
<td>79</td>
</tr>
<tr>
<td>40</td>
<td>0.869</td>
<td>-174</td>
<td>3.59</td>
<td>67</td>
</tr>
<tr>
<td>50</td>
<td>0.676</td>
<td>-174</td>
<td>2.91</td>
<td>62</td>
</tr>
<tr>
<td>60</td>
<td>0.884</td>
<td>-174</td>
<td>2.36</td>
<td>60</td>
</tr>
<tr>
<td>70</td>
<td>0.890</td>
<td>-175</td>
<td>2.06</td>
<td>59</td>
</tr>
<tr>
<td>80</td>
<td>0.890</td>
<td>-175</td>
<td>1.75</td>
<td>56</td>
</tr>
<tr>
<td>90</td>
<td>0.910</td>
<td>-176</td>
<td>1.52</td>
<td>51</td>
</tr>
<tr>
<td>100</td>
<td>0.920</td>
<td>-176</td>
<td>1.26</td>
<td>43</td>
</tr>
</tbody>
</table>

Any indemnify MACOM for any damages resulting from such improper use of data.
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>0.929</td>
<td>-176</td>
<td>1.07</td>
<td>37</td>
<td>0.006</td>
<td>-15</td>
</tr>
<tr>
<td>120</td>
<td>0.937</td>
<td>-176</td>
<td>0.68</td>
<td>34</td>
<td>0.006</td>
<td>-4</td>
</tr>
<tr>
<td>130</td>
<td>0.943</td>
<td>-176</td>
<td>0.75</td>
<td>32</td>
<td>0.004</td>
<td>5</td>
</tr>
<tr>
<td>140</td>
<td>0.947</td>
<td>-177</td>
<td>0.67</td>
<td>32</td>
<td>0.003</td>
<td>6</td>
</tr>
<tr>
<td>150</td>
<td>0.950</td>
<td>-177</td>
<td>0.63</td>
<td>32</td>
<td>0.004</td>
<td>6</td>
</tr>
<tr>
<td>160</td>
<td>0.953</td>
<td>-178</td>
<td>0.56</td>
<td>32</td>
<td>0.005</td>
<td>6</td>
</tr>
<tr>
<td>170</td>
<td>0.957</td>
<td>-178</td>
<td>0.54</td>
<td>29</td>
<td>0.006</td>
<td>36</td>
</tr>
<tr>
<td>180</td>
<td>0.961</td>
<td>-179</td>
<td>0.51</td>
<td>24</td>
<td>0.006</td>
<td>53</td>
</tr>
<tr>
<td>190</td>
<td>0.964</td>
<td>-179</td>
<td>0.45</td>
<td>18</td>
<td>0.006</td>
<td>65</td>
</tr>
<tr>
<td>200</td>
<td>0.967</td>
<td>-179</td>
<td>0.39</td>
<td>15</td>
<td>0.005</td>
<td>69</td>
</tr>
<tr>
<td>210</td>
<td>0.969</td>
<td>-179</td>
<td>0.35</td>
<td>15</td>
<td>0.005</td>
<td>63</td>
</tr>
<tr>
<td>220</td>
<td>0.971</td>
<td>-180</td>
<td>0.31</td>
<td>15</td>
<td>0.006</td>
<td>59</td>
</tr>
<tr>
<td>230</td>
<td>0.972</td>
<td>-180</td>
<td>0.28</td>
<td>17</td>
<td>0.009</td>
<td>66</td>
</tr>
<tr>
<td>240</td>
<td>0.973</td>
<td>180</td>
<td>0.27</td>
<td>20</td>
<td>0.010</td>
<td>78</td>
</tr>
<tr>
<td>250</td>
<td>0.974</td>
<td>180</td>
<td>0.27</td>
<td>19</td>
<td>0.010</td>
<td>88</td>
</tr>
<tr>
<td>260</td>
<td>0.976</td>
<td>179</td>
<td>0.24</td>
<td>17</td>
<td>0.009</td>
<td>85</td>
</tr>
<tr>
<td>270</td>
<td>0.977</td>
<td>179</td>
<td>0.24</td>
<td>12</td>
<td>0.010</td>
<td>73</td>
</tr>
<tr>
<td>280</td>
<td>0.978</td>
<td>179</td>
<td>0.21</td>
<td>12</td>
<td>0.011</td>
<td>66</td>
</tr>
<tr>
<td>290</td>
<td>0.979</td>
<td>178</td>
<td>0.19</td>
<td>2</td>
<td>0.013</td>
<td>70</td>
</tr>
<tr>
<td>300</td>
<td>0.979</td>
<td>178</td>
<td>0.18</td>
<td>8</td>
<td>0.013</td>
<td>78</td>
</tr>
<tr>
<td>310</td>
<td>0.979</td>
<td>178</td>
<td>0.17</td>
<td>13</td>
<td>0.013</td>
<td>89</td>
</tr>
<tr>
<td>320</td>
<td>0.980</td>
<td>178</td>
<td>0.17</td>
<td>14</td>
<td>0.012</td>
<td>88</td>
</tr>
<tr>
<td>330</td>
<td>0.981</td>
<td>177</td>
<td>0.14</td>
<td>9</td>
<td>0.013</td>
<td>80</td>
</tr>
<tr>
<td>340</td>
<td>0.982</td>
<td>177</td>
<td>0.16</td>
<td>17</td>
<td>0.015</td>
<td>75</td>
</tr>
<tr>
<td>350</td>
<td>0.982</td>
<td>177</td>
<td>0.15</td>
<td>14</td>
<td>0.018</td>
<td>80</td>
</tr>
<tr>
<td>360</td>
<td>0.982</td>
<td>177</td>
<td>0.14</td>
<td>8</td>
<td>0.018</td>
<td>82</td>
</tr>
<tr>
<td>370</td>
<td>0.982</td>
<td>176</td>
<td>0.12</td>
<td>6</td>
<td>0.017</td>
<td>82</td>
</tr>
<tr>
<td>380</td>
<td>0.982</td>
<td>176</td>
<td>0.12</td>
<td>6</td>
<td>0.015</td>
<td>77</td>
</tr>
<tr>
<td>390</td>
<td>0.982</td>
<td>176</td>
<td>0.11</td>
<td>9</td>
<td>0.015</td>
<td>72</td>
</tr>
<tr>
<td>400</td>
<td>0.982</td>
<td>176</td>
<td>0.10</td>
<td>13</td>
<td>0.018</td>
<td>78</td>
</tr>
<tr>
<td>410</td>
<td>0.983</td>
<td>175</td>
<td>0.11</td>
<td>11</td>
<td>0.021</td>
<td>83</td>
</tr>
</tbody>
</table>

Table 2. Common Source S–Parameters (Vos = 28 V, ID = 0.65 A) (continued)

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.
Table 2. Common Source S–Parameters (V_{DS} = 26 V, I_D = 0.65 A) (continued)

| f MHz | |s_{11}| | ϕ | |s_{21}| | ϕ | |s_{12}| | ϕ | |s_{22}| | ϕ |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 420 | 0.983 | 175 | 0.10 | 15 | 0.021 | 87 | 1.070 | 175 |
| 430 | 0.983 | 175 | 0.10 | 14 | 0.019 | 85 | 1.090 | 175 |
| 440 | 0.983 | 174 | 0.10 | 10 | 0.018 | 76 | 1.130 | 175 |
| 450 | 0.983 | 174 | 0.10 | 9 | 0.021 | 71 | 1.130 | 175 |
| 460 | 0.982 | 174 | 0.08 | 10 | 0.024 | 70 | 1.080 | 174 |
| 470 | 0.983 | 174 | 0.08 | 11 | 0.023 | 82 | 0.996 | 175 |
| 480 | 0.983 | 174 | 0.08 | 15 | 0.021 | 90 | 0.974 | 176 |
| 490 | 0.983 | 173 | 0.08 | 12 | 0.019 | 87 | 0.971 | 175 |
| 500 | 0.983 | 173 | 0.08 | 17 | 0.021 | 78 | 1.010 | 174 |

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.
RF POWER MOSFET CONSIDERATIONS

MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (C_{gd}), and gate-to-source (C_{gs}). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain-to-source (C_{ds}).

These capacitances are characterized as input (C_{iss}), output (C_{oss}) and reverse transfer (C_{rss}) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The C_{iss} can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

\[C_{iss} = C_{gd} + C_{gs} \]
\[C_{oss} = C_{gd} + C_{ds} \]
\[C_{rss} = C_{gd} \]

LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to f_T for bipolar transistors.

Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, \(R_{DSS} \), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, \(V_{DSS} \) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

GATE CHARACTERISTICS

The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 10^6 ohms — resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, \(V_{GS(th)} \).

Gate Voltage Rating — Never exceed the gate voltage rating. Exceeding the rated \(V_{GS} \) can result in permanent damage to the oxide layer in the gate region.

Gate Termination — The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection — These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION. TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

For further information and support please visit:
https://www.macom.com/support
EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY

Collector Drain
Emitter Source
Base Gate
\(V_{(BR)CES} \) \(V_{(BR)DSS} \)
\(V_{CEO} \) \(V_{DSO} \)
\(I_{C} \) \(I_{D} \)
\(I_{CES} \) \(I_{SS} \)
\(I_{CEO} \) \(I_{GS} \)
\(V_{BE(on)} \) \(V_{GS(th)} \)
\(V_{CE(sat)} \) \(V_{DS(on)} \)
\(C_{lb} \) \(C_{GS} \)
\(C_{ob} \) \(C_{SS} \)
\(\rho_{fe} \) \(\rho_{fs} \)

\(R_{CE(sat)} = \frac{V_{CE(sat)}}{I_{C}} \)

\(R_{DS(on)} = \frac{V_{DS(on)}}{I_{D}} \)

PACKAGE DIMENSIONS

CASE 375-04
ISSUE D