Class A, Class AB Microwave Power Silicon NPN Transistor
0.7 W, 960–1215 MHz, 18V

Features
- Guaranteed performance @ 1090 MHz, 18 Vdc — Class A
- Output power: 0.2W
- Minimum gain: 10dB
- 100% tested for load mismatch at all phase angles with 10:1 VSWR
- Industry standard package
- Nitride passivated
- Gold metallized, emitter ballasted for long life and resistance to metal migration
- Internal input matching for broadband operation

Description and Applications
Designed for Class A and AB common emitter amplifier applications in the low-power stages of IFF, DME, TACAN, radar transmitters, and CW systems.

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Voltage</td>
<td>VCEO</td>
<td>20</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Voltage</td>
<td>VCBO</td>
<td>50</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Voltage</td>
<td>VCEO</td>
<td>3.5</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Current — Continuous</td>
<td>IC</td>
<td>200</td>
<td>mA dc</td>
</tr>
<tr>
<td>Total Device Dissipation @ T_C = 25°C (1)</td>
<td>PD</td>
<td>7.0</td>
<td>Watts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>mW°C</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case (2)</td>
<td>Rjc</td>
<td>25</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–Emitter Breakdown Voltage (I_C = 5.0 mA dc, I_E = 0)</td>
<td>VBRCEO</td>
<td>20</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Emiter Breakdown Voltage (I_C = 5.0 mA dc, V_CE = 0)</td>
<td>VBRCE</td>
<td>50</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector–Base Breakdown Voltage (I_C = 5.0 mA dc, I_E = 0)</td>
<td>VBRCEO</td>
<td>50</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter–Base Breakdown Voltage (I_E = 1.0 mA dc, I_C = 0)</td>
<td>VBRCEO</td>
<td>3.5</td>
<td>—</td>
<td>—</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Cutoff Current (V_CE = 20 Vdc, I_E = 0)</td>
<td>ICBO</td>
<td>—</td>
<td>—</td>
<td>0.5</td>
<td>mA dc</td>
</tr>
</tbody>
</table>

ON CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Current Gain (I_C = 100 mA dc, V_CE = 5.0 Vdc)</td>
<td>h_FE</td>
<td>10</td>
<td>—</td>
<td>100</td>
<td>—</td>
</tr>
</tbody>
</table>

1. These devices are designed for RF operation. The total device dissipation rating applies only when the device is operated as RF amplifiers.
2. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.
ELECTRICAL CHARACTERISTICS — continued
(T_c = 25°C unless otherwise noted.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
</table>
| Output Capacitance
(V_{CE} = 28 Vdc, I_E = 0, f = 1.0 MHz) | C_{ob} | — | 2.0 | 5.0 | pF |

DYNAMIC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Functional Test</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
</table>
| Common–Emitter Power Gain — Class A
(V_{CE} = 18 Vdc, I_{CE} = 100 mAdec, f = 1090 MHz, P_{out} = 200 mW) | G_{FE} | 10 | 12 | — | dB |
| Common–Emitter Power Gain — Class AB
(V_{CE} = 18 Vdc, I_{CQ} = 10 mAdec, f = 1090 MHz, P_{out} = 0.7 W) | G_{FE} | — | 10.7 | — | dB |
| Load Mismatch — Class A
(V_{CE} = 18 Vdc, I_{CE} = 100 mAdec, f = 1090 MHz, P_{out} = 200 mW, V_{SWR} = 10.1 All Phase Angles) | ψ | No Degradation in Power Output |

C1, C2, C3, C7, C8, C10 — 220 pF ATC 100 mil
C4, C9 — 4.7 μF 50 V Tantalum
C5, C6 — 0.8–8.0 pF Johnson #7280
Z1–Z10 — Distributed Microstrip Elements
— See Figure 8
Board Material — 0.031" Thick Teflon–Fiberglass
ε_r = 2.56

Figure 1. 1090 MHz Test Circuit

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Visit www.macom.com for additional data sheets and product information.
Class A, Class AB Microwave Power Silicon NPN Transistor
0.7 W, 960–1215 MHz, 18V

Figure 2. Output Power versus Input Power

![Figure 2. Output Power versus Input Power](image)

Figure 3. Output Power versus Frequency

![Figure 3. Output Power versus Frequency](image)

Figure 4. DC Safe Operating Area

![Figure 4. DC Safe Operating Area](image)

Figure 5. Power Gain versus Frequency

![Figure 5. Power Gain versus Frequency](image)
Class A, Class AB Microwave Power Silicon NPN Transistor
0.7 W, 960–1215 MHz, 18V

SERIES EQUIVALENT IMPEDANCES
\[P_{out} = 0.5 \text{ W}, \ V_{CE} = 18 \text{ Vdc}, \ I_{Q0} = 10 \text{ mA}dc, \text{ Class AB} \]

\[
\begin{array}{|c|c|c|}
\hline
f \text{ MHz} & Z_{in} \text{ Ohms} & Z_{out} \text{ Ohms} \\
\hline
960 & 3.0 + j9.0 & 16 - j40 \\
1090 & 3.2 + j10 & 8.5 - j31 \\
1215 & 2.8 + j12 & 7.0 - j25 \\
\hline
\end{array}
\]

\[Z_{out}^* = \text{Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage, and frequency.} \]

S–PARAMETERS — \(V_{CE} = 18 \text{ Vdc}, \ I_{C} = 100 \text{ mA}dc, \text{ Class A} \)

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
f \text{ (MHz)} & |S_{11}| & \angle \phi & |S_{21}| & \angle \phi & |S_{12}| & \angle \phi & |S_{22}| & \angle \phi \\
\hline
950 & 0.77 & 166 & 2.42 & 40 & 0.016 & 42 & 0.46 & -87 \\
1000 & 0.73 & 165 & 2.36 & 36 & 0.016 & 46 & 0.50 & -90 \\
1050 & 0.77 & 183 & 2.31 & 33 & 0.016 & 46 & 0.51 & -94 \\
1100 & 0.77 & 162 & 2.31 & 28 & 0.016 & 46 & 0.54 & -97 \\
1150 & 0.78 & 161 & 2.20 & 23 & 0.015 & 46 & 0.57 & -100 \\
1200 & 0.78 & 159 & 2.20 & 19 & 0.016 & 47 & 0.59 & -103 \\
1250 & 0.78 & 158 & 2.12 & 12 & 0.016 & 42 & 0.61 & -106 \\
\hline
\end{array}
\]

Figure 6. Common–Emitter S–Parameters and Series Equivalent Input/Output Impedances
Replaces MRF1000MA/D

PACKAGE DIMENSIONS

For further information and support please visit:
https://www.macom.com/support
Class A, Class AB Microwave Power Silicon NPN Transistor
0.7 W, 960–1215 MHz, 18V

M/A-COM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.