MEST2G-150-10-CM32

Pin Diode Switch Element

Features
- High Power Handling 150 W @ 1.5 GHz or less
- Low Insertion Loss:
 - 0.15 dB @ 1.0 GHz
 - 0.20 dB @ 2.0 GHz
- Medium Isolation: 10 dB @ 1.0 GHz
- RoHS* Compliant

Description
The MEST2G-150-10-CM32 is a thermal to ground series diode switch element (EST2G) in an Aluminum Nitride package. This part is designed for a reliable high power switch application up to 150 watts. Usable up to 2.0 GHz.

Electrical Specifications: \(T_C = +25^\circ C \) (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown Voltage ((V_{bn}))</td>
<td>(I_R = 10 \mu A)</td>
<td>V</td>
<td>500</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Leakage Current ((I_R))</td>
<td>(V_R = 100 V)</td>
<td>nA</td>
<td>—</td>
<td>80</td>
<td>250</td>
</tr>
<tr>
<td>Forward Voltage ((V_F))</td>
<td>(I_F = 100 mA)</td>
<td>V</td>
<td>—</td>
<td>900</td>
<td>—</td>
</tr>
<tr>
<td>Series Resistance ((R_S))</td>
<td>(I_F = 100 mA, 100 MHZ)</td>
<td>(\Omega)</td>
<td>—</td>
<td>0.22</td>
<td>—</td>
</tr>
<tr>
<td>Resistance ((R_{LIM}))</td>
<td>Spice Model</td>
<td>(\Omega)</td>
<td>—</td>
<td>0.20</td>
<td>—</td>
</tr>
<tr>
<td>Total Capacitance ((C_T))</td>
<td>(V_R = 50 V, 1 MHz)</td>
<td>(pF)</td>
<td>—</td>
<td>0.50</td>
<td>—</td>
</tr>
<tr>
<td>Junction Capacitance ((C_J))</td>
<td>Spice Model</td>
<td>(pF)</td>
<td>—</td>
<td>0.41</td>
<td>—</td>
</tr>
<tr>
<td>Lifetime (t)</td>
<td>(I_F = 10 mA, I_R = 6 mA, 50%)</td>
<td>ns</td>
<td>—</td>
<td>3000</td>
<td>—</td>
</tr>
<tr>
<td>I-Region (w)</td>
<td>I-Layer</td>
<td>(\mu m)</td>
<td>—</td>
<td>80</td>
<td>—</td>
</tr>
<tr>
<td>Input / Output Return Loss ((I/OR_L))</td>
<td>(I_F = 100 mA, 1.0 GHz) (I_F = 100 mA, 2.0 GHz)</td>
<td>dB</td>
<td>15</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Insertion Loss ((I_L))</td>
<td>(I_F = 100 mA, 1.0 GHz) (I_F = 100 mA, 2.0 GHz)</td>
<td>dB</td>
<td>—</td>
<td>0.12</td>
<td>0.20</td>
</tr>
<tr>
<td>Isolation ((I_{SO}))</td>
<td>(V_R = 10 V, 1.0 GHz) (V_R = 10 V, 2.0 GHz)</td>
<td>dB</td>
<td>10</td>
<td>12</td>
<td>7</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings\(^1,2\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown Voltage (V(_{BR}))</td>
<td>500 V</td>
</tr>
<tr>
<td>Forward Current (I(_{FDC}))</td>
<td>500 mA</td>
</tr>
<tr>
<td>Thermal Resistance ((\theta_{JC}))</td>
<td>25°C/W</td>
</tr>
<tr>
<td>Junction Temperature (T(_J))</td>
<td>-40°C to 175°C</td>
</tr>
<tr>
<td>Storage Temperature (T(_{STG}))</td>
<td>-55°C to +150°C</td>
</tr>
<tr>
<td>Mounting Temperature (T(_{MTG}))</td>
<td>+260°C per JEDEC STD-J-20C</td>
</tr>
</tbody>
</table>

1. Exceeding any one or combination of these limits may cause permanent damage to this device.
2. MACOM does not recommend sustained operation near these survivability limits.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 0 (HBM) devices.

Typical Performance Curves: \(T_A = 25°C\), \(Z_O = 50 \Omega\), -10 dBm Small Signal

Insertion Loss

Isolation

Input Return Loss
Resistance vs. Bias Current, 100 MHz

![Graph showing resistance vs. bias current at 100 MHz](image1)

Junction Temperature vs. Input Power

*Mounted on Heat Sink @ \(T_A = 25°C, 1.3 \text{ GHz} \)

![Graph showing junction temperature vs. input power](image2)

PCB Layout

![PCB layout diagram](image3)

Plated through, filled and plated over vias

Solder mask should provide 60um clearance between copper pad and solder mask. Rounded pkg pads should have matching rounded solder mask openings.

Use circles or squares for the thermal land stencil design such that only get 60 to 80% solder paste coverage.
Outline (CM32)

Pin function for Silicon PIN diode.
1. Anode
2. Cathode

Notes:
2. Dimensions in mils [mm]