MEST2G-100-20-CM33

Pin Diode Switch Element

Rev. V1

Features
- Low Insertion Loss:
 0.10 dB @ 1.0 GHz
 0.15 dB @ 2.6 GHz
- Medium Isolation: 16 dB @ 1 GHz
- RoHS* Compliant

Description
The MEST2G-100-20-CM33 is a Thermal To Ground Series diode Switch Element in an Aluminum Nitride package. This part is designed for reliable high power switch applications up to 100 watts and with a frequency range to 2.6 GHz.

Electrical Specifications: $T_C = +25^\circ C$ (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown Voltage (V_{BR})</td>
<td>$I_R = 10 \mu A$</td>
<td>V</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leakage Current (I_R)</td>
<td>$V_R = 100 , V$</td>
<td>nA</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Forward Voltage (V_F)</td>
<td>$I_F = 100 , mA$</td>
<td>V</td>
<td></td>
<td>900</td>
<td>950</td>
</tr>
<tr>
<td>Lifetime (t)</td>
<td>$I_F = 10 , mA, I_R = 6 , mA, 50%$</td>
<td>ns</td>
<td></td>
<td>2000</td>
<td></td>
</tr>
</tbody>
</table>
| Input / Output Return Loss (I/OR_L) | $I_F = 100 \, mA, 1.0 \, GHz$
 $I_F = 100 \, mA, 2.6 \, GHz$ | dB | 25 | 38 | — |
| | | | 21 | 34 | — |
| Insertion Loss (I_L) | $I_F = 100 \, mA, 1.0 \, GHz$
 $I_F = 100 \, mA, 2.6 \, GHz$ | dB | | 0.10 | 0.20 |
| | | | | 0.15 | 0.25 |
| Isolation (I_{SO}) | $V_R = 10 \, V, 0.5 \, GHz$
 $V_R = 10 \, V, <1.0 \, GHz$ | dB | 14 | | 16.5 |
| | | | | 10.0 | — |

Absolute Maximum Ratings1,2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown Voltage (V_{R})</td>
<td>500 V</td>
</tr>
<tr>
<td>Forward Current (I_{FDC})</td>
<td>500 mA</td>
</tr>
<tr>
<td>Thermal Resistance (θ_{JC})</td>
<td>18°C/W</td>
</tr>
<tr>
<td>Junction Temperature (T_{j})</td>
<td>-40°C to 175°C</td>
</tr>
<tr>
<td>Storage Temperature (T_{STG})</td>
<td>-55°C to +150°C</td>
</tr>
<tr>
<td>Mounting Temperature (T_{MTG})</td>
<td>+260°C per JEDEC STD-J-20C</td>
</tr>
</tbody>
</table>

1. Exceeding any one or combination of these limits may cause permanent damage to this device.
2. MACOM does not recommend sustained operation near these survivability limits.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 0 (HBM) devices.

Typical Performance Curves: $T_{A} = 25°C$, $Z_{O} = 50\,\Omega$, -10 dBm Small Signal

Insertion Loss

Isolation

Input / Output Return Loss

Series Resistance vs. Current, 500 MHz
MEST2G-100-20-CM33

Pin Diode Switch Element

Rev. V1

Insertion Loss

Isolation

Input Return Loss

Output Return Loss
MEST2G-100-20-CM33

Pin Diode Switch Element

Junction Temperature vs Input Power PCB Mounted on Heat Sink, 25 °C Ambient, 1.3 GHz and 50 mA Bias

![Graph](image1)

Junction Temperature vs Input Power PCB Mounted on Heat Sink, 25 °C Ambient, 1.3 GHz and 100 mA Bias

![Graph](image2)

Notes:
1. 16.6 mils Rogers RO4350B with ½ oz. copper clad and copper filled and plated over 10 mil diameter vias under package thermal ground.

PCB Layout

Copper filled and plated over 10 mil diameter vias on 17 mil centers.

Solder mask (in green) should provide 60 um clearance between copper pad and solder mask. Rounded pkg pads should have matching rounded solder mask openings. On the outer edges of package, use 100 um clearance.

For the solder paste stencil design, use circles or squares such that only get 60 to 80% solder paste coverage.
Outline (CM33)

Pin function for Silicon PIN diode.
1. Anode
2. Cathode
M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.