MEST2G-010-20

Pin Diode Switch Element

Features
- Supports up to 10 W Power
- Low Insertion Loss: 0.5 dB up to 2.7 GHz
- High Isolation: 23 dB up to 2.7 GHz
- RoHS* Compliant

Description
A broadband medium power switch element in a 1.9 x 1.1 mm DFN package. This device is electrical series and thermal direct to ground (EST2G). This device is designed for wireless infrastructure applications and test instruments. It is also suited for other applications from 100 MHz up to 10 GHz.

Electrical Specifications: \(T_C = +25^\circ\text{C} \) (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown Voltage ((V_{BR}))</td>
<td>(I_R = 10 \mu A)</td>
<td>V</td>
<td>100</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Lifetime ((t))</td>
<td>(I_F = 10 \text{ mA}, I_R = 6 \text{ mA}, 10% / 90%)</td>
<td>ns</td>
<td>—</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>I-Region ((w))</td>
<td>I-Layer</td>
<td>(\mu m)</td>
<td>—</td>
<td>8</td>
<td>—</td>
</tr>
<tr>
<td>Series Resistance ((R_S))</td>
<td>(I_F = 100 \text{ mA})</td>
<td>(\Omega)</td>
<td>—</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>Junction Capacitance ((C_J))</td>
<td>(V_R = -10 \text{ V}, 1 \text{ MHz})</td>
<td>pF</td>
<td>—</td>
<td>0.04</td>
<td>—</td>
</tr>
<tr>
<td>Insertion Loss ((I_L))</td>
<td>(I_F = 50 \text{ mA}, 2.3 - 2.7 \text{ GHz}) (I_F = 50 \text{ mA}, <8 \text{ GHz})</td>
<td>dB</td>
<td>—</td>
<td>0.40</td>
<td>0.75</td>
</tr>
<tr>
<td>Input Return Loss ((I_{RL}))</td>
<td>(I_F = 50 \text{ mA}, 2.3 - 2.7 \text{ GHz}) (I_F = 50 \text{ mA}, <8 \text{ GHz})</td>
<td>dB</td>
<td>20</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>Isolation ((I_{SO}))</td>
<td>(V_R = -10 \text{ mA}, 2.3 - 2.7 \text{ GHz}) (V_R = -10 \text{ mA}, <8 \text{ GHz})</td>
<td>dB</td>
<td>20</td>
<td>23</td>
<td>14</td>
</tr>
</tbody>
</table>

Pin Diode Switch Element

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown Voltage (V_{BR})</td>
<td>100 V</td>
</tr>
<tr>
<td>Forward Current (I_F)</td>
<td>100 mA</td>
</tr>
<tr>
<td>Thermal Resistance (θ_{JC})</td>
<td>130°C/W</td>
</tr>
<tr>
<td>Junction Temperature (T_J)</td>
<td>175°C</td>
</tr>
<tr>
<td>Storage Temperature (T_{STG})</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Mounting Temperature (T_{MTG})</td>
<td>+260°C per JEDEC STD-J-20C</td>
</tr>
</tbody>
</table>

1. Exceeding any one or combination of these limits may cause permanent damage to this device.
2. MACOM does not recommend sustained operation near these survivability limits.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 0 (HBM) devices.

Typical Performance Curves: $T_A = 25°C$, $Z_O = 50 \, \Omega$, Small Signal

Insertion Loss

![Insertion Loss Graph](image)

Isolation

![Isolation Graph](image)

Input Return Loss

![Input Return Loss Graph](image)
3. Unless otherwise specified: Tolerance ±0.10 mm
4. If possible, use copper filled vias underneath pin 3 for better thermals; otherwise, use vias that are plated through, filled and plated over.
5. Solder mask should provide a 60 µm clearance between copper pad and soldermask. Rounded package pads should have matching rounded solder mask openings.
6. Use circles or squares for thermal land stencil such that there is only 50% to 80% solder paste coverage
2012-0 Package Outline Before DC: 1528:

Finish: 300 micro inches matte tin
1 hour 150 °C anneal
Pin Diode Switch Element

2012-1 Package Outline After DC: 1528:

Dimensions in inches [mm]

Notes:
1. LEAD FRAME MATERIAL: 8 ML COPPER.
2. BOTH TERMINAL SPLITTING: Ni/Pt/Au; Ni:≥2.8um; Pt:0.5-0.6um; Au:0.12-0.16um
3. DIMENSIONS IN PARENTHESES ARE IN MM.
M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.