Open Carrier Triple-Balanced Mixer
For Microwave Telecommunications

Features
- LO & RF: 2.0 TO 16.0 GHz
- IF: 1.0 TO 8.0 GHz
- LO DRIVE: +13 dBm (NOMINAL)
- MICROSTRIP INTERFACE

Description
The MC3013 is a triple balanced mixer, designed for use in military, commercial and test equipment applications. The design utilizes Schottky ring quad diodes and broadband soft dielectric baluns to attain excellent performance. The use of high temperature solder and welded assembly processes used internally makes it ideal for use in manual, semi-automated assembly. Environmental screening available to MIL-STD-883, MIL-STD-202 or MIL-DTL-28837, consult factory.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC3013</td>
<td>Open Carrier</td>
</tr>
<tr>
<td>MC3013-2</td>
<td>Open Carrier</td>
</tr>
</tbody>
</table>

Electrical Specifications: \(Z_0 = 50\Omega \) Lo = +13 dBm (Downconverter application only)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Typical</th>
<th>Guaranteed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>+25°C</td>
<td>-54° to +85°C</td>
</tr>
<tr>
<td>SSB Conversion Loss (max) & SSB Noise</td>
<td>(\text{f}_R = 2 \text{ to } 3 \text{ GHz, f}_L = 2 \text{ to } 3 \text{ GHz, f}_I = 1 \text{ to } 8 \text{ GHz})</td>
<td>dB</td>
<td>10.0</td>
<td>11.5</td>
</tr>
<tr>
<td>Figure (max)</td>
<td>(\text{f}_R = 3 \text{ to } 10 \text{ GHz, f}_L = 3 \text{ to } 10 \text{ GHz, f}_I = 1 \text{ to } 8 \text{ GHz})</td>
<td>dB</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>(\text{f}_R = 10 \text{ to } 16 \text{ GHz, f}_L = 10 \text{ to } 16 \text{ GHz, f}_I = 1 \text{ to } 8 \text{ GHz})</td>
<td>dB</td>
<td>8.0</td>
<td>11.0</td>
</tr>
<tr>
<td>Isolation, L to R (min)</td>
<td>(\text{f}_L = 2 \text{ to } 12 \text{ GHz})</td>
<td>dB</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>(\text{f}_L = 12 \text{ to } 16 \text{ GHz})</td>
<td>dB</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>Isolation, L to I (min)</td>
<td>(\text{f}_L = 2 \text{ to } 4 \text{ GHz})</td>
<td>dB</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>(\text{f}_L = 4 \text{ to } 16 \text{ GHz})</td>
<td>dB</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>Isolation, R to I (min)</td>
<td>(\text{f}_L = 2 \text{ to } 16 \text{ GHz})</td>
<td>dB</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>1 dB Conversion Comp.</td>
<td>(\text{f}_L = +13 \text{ dBm})</td>
<td>dBm</td>
<td>+7</td>
<td></td>
</tr>
<tr>
<td>Input IP3</td>
<td>(\text{f}_R1 = 8 \text{ GHz at } -3 \text{ dBm, f}_R2 = 8.01 \text{ GHz at } -3 \text{ dBm, f}_L = 10 \text{ GHz at } +13 \text{ dBm})</td>
<td>dBm</td>
<td>+17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{f}_R1 = 11 \text{ GHz at } -3 \text{ dBm, f}_R2 = 11.01 \text{ GHz at } -3 \text{ dBm, f}_L = 16 \text{ GHz at } +13 \text{ dBm})</td>
<td>dBm</td>
<td>+17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{f}_R1 = 6 \text{ GHz at } -3 \text{ dBm, f}_R2 = 6.01 \text{ GHz at } -3 \text{ dBm, f}_L = 14 \text{ GHz at } +13 \text{ dBm})</td>
<td>dBm</td>
<td>+17</td>
<td></td>
</tr>
</tbody>
</table>
Typical Performance Curves

Conversion Loss vs. RF Frequency

Conversion Loss (dB)

Conversion Loss vs. RF Frequency

Conversion Loss (dB)
MC3013

Open Carrier Triple-Balanced Mixer
For Microwave Telecommunications

Rev. V2

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>-54°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +100°C</td>
</tr>
<tr>
<td>Peak Input Power</td>
<td>+23 dBm max @ +25°C</td>
</tr>
<tr>
<td></td>
<td>+20 dBm max @ +85°C</td>
</tr>
<tr>
<td>Peak Input Current</td>
<td>50 mA DC</td>
</tr>
</tbody>
</table>

Outline Drawing: Open Carrier* MC3013

*For base model, only IF1 port is connected.
For the “-2” model, only the IF2 port is connected.

* Dimensions are inches (millimeters) ±0.015 (0.38) unless otherwise specified.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Open Carrier Triple-Balanced Mixer
For Microwave Telecommunications

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.