SPDT Default On High Isolation CATV Switch
5 – 3000 MHz

Features
- 75 Ω Terminations RF1 / RF2
- Positive Voltage Control
- High Isolation: 90 dB @ 216 MHz
- Low Insertion Loss: 1.4 dB @ 2200 MHz
- Lead-Free 3 mm 16-Lead PQFN Package
- Halogen-Free “Green” Mold Compound
- RoHS* Compliant and 260°C Reflow Compatible

Description
The MASW-009101 is a single pole double throw (SPDT) switch in a lead-free 3 mm 16-lead PQFN package. It meets FCC 15.115 specification of 80 dB isolation between RF1 and RF2 at 216 MHz during powered and un-powered states. The default on un-powered state provides a low insertion loss path from RFC to RF1 while maintaining high isolation between RF2 and RFC/RF1.

This device is ideally suited for applications where low control voltage, high isolation, small size and low cost are required.

Typical applications are to replace mechanical relays in CATV and satellite systems. This part can be used in all 75 Ω systems operating up to 3 GHz.

The MASW-009101 is fabricated using a GaAs pHEMT process. The process features full passivation for performance and reliability.

Functional Schematic**

Pin Configuration 3

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>2</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>3</td>
<td>RFC</td>
<td>RF Common Port</td>
</tr>
<tr>
<td>4</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>5</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>6</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>7</td>
<td>RF2</td>
<td>RF Port 2</td>
</tr>
<tr>
<td>8</td>
<td>GT2</td>
<td>RF Termination</td>
</tr>
<tr>
<td>9</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>10</td>
<td>V2</td>
<td>Control Voltage 2</td>
</tr>
<tr>
<td>11</td>
<td>V1</td>
<td>Control Voltage 1</td>
</tr>
<tr>
<td>12</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>13</td>
<td>GT1</td>
<td>RF Termination</td>
</tr>
<tr>
<td>14</td>
<td>RF1</td>
<td>RF Port 1</td>
</tr>
<tr>
<td>15</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>16</td>
<td>N/C</td>
<td>No Connection</td>
</tr>
<tr>
<td>17</td>
<td>PAD3</td>
<td>RF and DC Ground</td>
</tr>
</tbody>
</table>

** Default On path shown

Ordering Information 1,2

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASW-009101-TR3000</td>
<td>3000 piece reel</td>
</tr>
<tr>
<td>MASW-009101-001SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

3. The exposed pad centered on the package bottom must be connected to RF and DC ground.

Electrical Specifications: \(T_A = 25^\circ \text{C}, \ V_C = 0 \ \text{V} / 3 \ \text{V}, \ Z_0 = 75 \ \Omega \)

Unpowered Operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss RF1 to RFC</td>
<td>2200 MHz</td>
<td>dB</td>
<td>—</td>
<td>0.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Isolation RF1-RF2</td>
<td>50 MHz 220 MHz 1000 MHz 2200 MHz</td>
<td>dB</td>
<td>52</td>
<td>47</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>220 MHz 1000 MHz 2200 MHz</td>
<td></td>
<td>47</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Isolation RFC-RF1/RFC</td>
<td>50 MHz 220 MHz 1000 MHz 2200 MHz</td>
<td>dB</td>
<td>80</td>
<td>60</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>220 MHz 1000 MHz 2200 MHz</td>
<td></td>
<td>47</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Return Loss</td>
<td>50 MHz 220 MHz 1000 MHz 2200 MHz</td>
<td>dB</td>
<td>—</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>Input P1dB (RF1/RF2)</td>
<td>1000 MHz</td>
<td>dBm</td>
<td>—</td>
<td>28/18</td>
<td>—</td>
</tr>
<tr>
<td>IIP3 (RF1/RF2)</td>
<td>2 tone, 5 dBm/tone, 6MHz spacing, 1000 MHz</td>
<td>dBm</td>
<td>—</td>
<td>40/37</td>
<td>—</td>
</tr>
<tr>
<td>IIP2 (RF1/RF2)</td>
<td>2 tone, 5 dBm/tone, 6MHz spacing, 1000 MHz</td>
<td>dBm</td>
<td>—</td>
<td>58/53</td>
<td>—</td>
</tr>
<tr>
<td>CSO (RF1/RF2)</td>
<td>132 channels, 18 dBmV / channel in</td>
<td>dBc</td>
<td>—</td>
<td>-80/-70</td>
<td>—</td>
</tr>
<tr>
<td>CTB (RF1/RF2)</td>
<td>132 channels, 18 dBmV / channel in</td>
<td>dBc</td>
<td>—</td>
<td>-85/-85</td>
<td>—</td>
</tr>
<tr>
<td>Trise, Tfall</td>
<td>10% to 90% RF, 90% to 10% RF</td>
<td>ns</td>
<td>—</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Ton, Toff</td>
<td>50% control to 90% RF, 50% control to 10% RF</td>
<td>ns</td>
<td>—</td>
<td>120</td>
<td>—</td>
</tr>
<tr>
<td>Transients</td>
<td>In Band</td>
<td>mV</td>
<td>—</td>
<td>80</td>
<td>—</td>
</tr>
<tr>
<td>Control Current</td>
<td>(</td>
<td>V_C</td>
<td>= 3.0 \ \text{V})</td>
<td>(\mu\text{A})</td>
<td>—</td>
</tr>
</tbody>
</table>

4. External 0.1 \(\mu\text{F}\) DC blocking capacitors are required on all RF In/Out and RF ground ports. See Application Schematic.
SPDT Default On High Isolation CATV Switch
5 – 3000 MHz

Truth Table 5

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
<th>RFC - RF1</th>
<th>RFC - RF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Off</td>
<td>On</td>
</tr>
</tbody>
</table>

5. Powered Operation: 1 = +3 to +5 V, 0 = 0 ± 0.2 V. Unpowered Operation: V1 = V2 = 0 V, |V1-V2| ≤ 0.1 V.

Application Schematic

C1-C5 = 0.1 µF
C6-C7 = 1000 pF

Absolute Maximum Ratings 6, 7

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power (5 - 3000 MHz, 3 V Control)</td>
<td>+29 dBm</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>+8.5 volts</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

6. Exceeding any one or combination of these limits may cause permanent damage.

7. M/A-COM Technology Solutions does not recommend sustained operation near these survivability limits.

Off-Chip Component Values

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-C5</td>
<td>0.1 µF</td>
<td>0402</td>
</tr>
<tr>
<td>C6-C7</td>
<td>1000 pF</td>
<td>0402</td>
</tr>
</tbody>
</table>

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.
Typical Performance Curves: Powered State

Insertion Loss, RFC to RF1

![Graph of Insertion Loss, RFC to RF1](image1)

Insertion Loss, RFC to RF2

![Graph of Insertion Loss, RFC to RF2](image2)

Isolation, RFC to RF1

![Graph of Isolation, RFC to RF1](image3)

Isolation, RFC to RF2

![Graph of Isolation, RFC to RF2](image4)
Typical Performance Curves: Powered State

Isolation, RF1 to RF2 (RFC to RF1 State)

Isolation, RF1 to RF2 (RFC to RF2 State)

Input Return Loss, RFC

Output Return Loss, RF1/RF2
Typical Performance Curves: Unpowered State

Insertion Loss, RFC to RF1 (unpowered state)

![Insertion Loss Graph]

Isolation, RF1 to RF2 (RFC to RF1 unpowered state)

![Isolation Graph]

Isolation, RFC to RF2 (unpowered state)

![Isolation Graph]

Output Return Loss, RF1/RF2 (unpowered state)

![Output Return Loss Graph]

Input Return Loss, RFC (unpowered state)

![Input Return Loss Graph]
Lead-Free 3 mm 16-Lead PQFN†

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is 100% tin over copper.
Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support