GaAs SPDT Terminated Switch
DC - 2.5 GHz

MASWSS0180
Rev. V3

Features
- Very Low Power Consumption
- High Isolation: 30 dB up to 2 GHz
- Very High Intercept Point: 46 dBm IP3
- Nanosecond Switching Speed
- Temperature Range: -40°C to +85°C
- Lead-Free SOIC-8 Package
- RoHS* Compliant Version of SW-338

Applications
- ISM
- Wireless Networking & Communication

Description
The MASWSS0180 is a GaAs MMIC SPDT terminated switch in a lead-free SOIC 8-lead surface mount plastic package. This switch is ideally suited for use where very low power consumption is required.

Typical applications include transmit/receive switching, switch matrices, and filter banks in systems such as radio and cellular equipment, PCM, GPS, fiber optic modules, and other battery powered radio equipment.

The MASWSS0180 is fabricated with a monolithic GaAs MMIC using a mature 1-micron process. The process features full chip passivation for increased performance and reliability.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASWSS0180</td>
<td>Bulk Packaging</td>
</tr>
<tr>
<td>MASWSS0180TR-3000</td>
<td>3000 piece reel</td>
</tr>
<tr>
<td>MASWSS0180SMB</td>
<td>Sample Test Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.
GaAs SPDT Terminated Switch
DC - 2.5 GHz

Electrical Specifications: \(T_A = 25^\circ C, V_C = 0 \text{ V} / -2.9 \text{ V}, Z_0 = 50 \Omega \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ. (^3)</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>DC - 0.5 GHz</td>
<td>dB</td>
<td>—</td>
<td>0.55</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>0.5 - 1.0 GHz</td>
<td></td>
<td>0.60</td>
<td>0.7</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1.0 - 2.0 GHz</td>
<td></td>
<td>0.65</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Isolation</td>
<td>DC - 0.5 GHz</td>
<td>dB</td>
<td>—</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>0.5 - 1.0 GHz</td>
<td></td>
<td>43</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1.0 - 2.0 GHz</td>
<td></td>
<td>35</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>VSWR On/Off</td>
<td>DC - 2.0 GHz</td>
<td>Ratio</td>
<td>—</td>
<td>1.1:1</td>
<td>—</td>
</tr>
<tr>
<td>(T_{\text{rise}}, T_{\text{fall}})</td>
<td>10% to 90% RF, 90% to 10 % RF</td>
<td>ns</td>
<td>—</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>(T_{\text{on}}, T_{\text{off}})</td>
<td>50% Control to 90% RF, 50% Control to 10 % RF</td>
<td>ns</td>
<td>—</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Transients</td>
<td>In-Band</td>
<td>mV</td>
<td>—</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>1 dB Compression Point</td>
<td>Input Power</td>
<td>dBm</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>50 MHz @ 2.9 V</td>
<td></td>
<td>16</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1 GHz @ 2.9 V</td>
<td></td>
<td>26</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>50 MHz @ 5.0 V</td>
<td></td>
<td>27</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1 GHz @ 5.0 V</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2nd Order Intercept</td>
<td>Measured Relative to Input Power</td>
<td>dBm</td>
<td>—</td>
<td>46</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(for two-tone input power up to +5 dBm)</td>
<td></td>
<td>52</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>50 MHz @ 2.9 V</td>
<td></td>
<td>63</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1 GHz @ 2.9 V</td>
<td></td>
<td>82</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>50 MHz @ 5.0 V</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1 GHz @ 5.0 V</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3rd Order Intercept</td>
<td>Measured Relative to Input Power</td>
<td>dBm</td>
<td>—</td>
<td>27</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(for two-tone input power up to +5 dBm)</td>
<td></td>
<td>27</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>50 MHz @ 2.9 V</td>
<td></td>
<td>47</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1 GHz @ 2.9 V</td>
<td></td>
<td>50</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>50 MHz @ 5.0 V</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1 GHz @ 5.0 V</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Control Current</td>
<td>(</td>
<td>V_C</td>
<td>= 2.9 \text{ V})</td>
<td>(\mu \text{A})</td>
<td>—</td>
</tr>
</tbody>
</table>

3. Typical values represent performance at middle of frequency range noted.

Truth Table \(^4\)

<table>
<thead>
<tr>
<th>Control Inputs</th>
<th>Condition of Switch RF Common to Each RF Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V1)</td>
<td>(V2)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

4. \(0 = 0 \text{ V} \pm 0.2 \text{ V}, 1 = -2.9 \text{ V} \to -5.0 \text{ V} \)

Absolute Maximum Ratings \(^5,6\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>27 dBm @ 0.05 GHz</td>
</tr>
<tr>
<td></td>
<td>34 dBm @ 0.5 - 2.0 GHz</td>
</tr>
<tr>
<td>Control Voltage</td>
<td>-8.5 \text{ V} \leq V_C \leq +5 \text{ V}</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

5. Exceeding any one or combination of these limits may cause permanent damage to this device.
6. MACOM does not recommend sustained operation near these survivability limits.
GaAs SPDT Terminated Switch
DC - 2.5 GHz

Typical Performance Curves

Insertion Loss

Isolation

VSWR
GaAs SPDT Terminated Switch
DC - 2.5 GHz

MASWSS0180
Rev. V3

Lead-Free SOIC-8†

† Reference Application Note M538 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
GaAs SPDT Terminated Switch
DC - 2.5 GHz

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM’s products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.