

Features

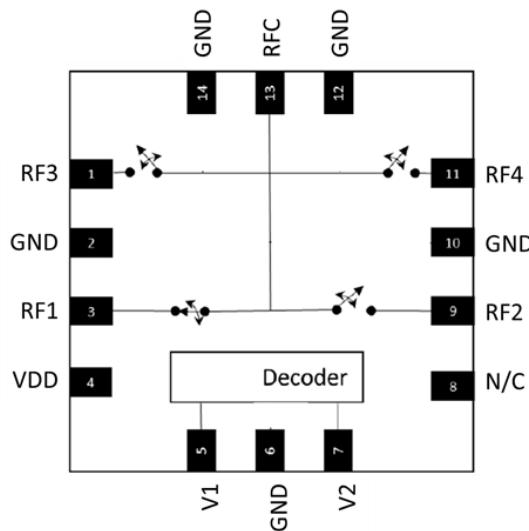
- Low Insertion Loss:
 - 0.30 dB at 1.0 GHz
 - 0.35 dB at 2.5 GHz
 - 0.40 dB at 5.0 GHz
 - 0.50 dB at 8.0 GHz
- Isolation: 35 dB at 2.5 GHz
- Input P0.1dB: 38.5 dBm at 2.5 GHz
- Input IP3: 73 dBm
- Single Supply: 3.3 V
- Integrated Negative Voltage Generator
- 2 mm 14-Lead QFN Package
- RoHS* Compliant

Applications

- MILCOM Radios
- Ultra-wideband
- Automotive V2X
- Test and Measurement
- Base Station

Description

The MASW-011270 is a reflective wideband single pole four throw (SP4T) switch with 0.35 dB of insertion loss at 2.5 GHz. The power handling capability is 37 dBm. The logic levels are compatible with standard 1.8 V, 2.5 V, and 3.3 V CMOS.


The MASW-011270 is manufactured on a Silicon-on-Insulator process. The 2 mm QFN package is lead free and RoHS compliant.

Ordering Information¹

Part Number	Package
MASW-011270-TR0500	500 part reel
MASW-011270-001SMB	Sample Board

1. Reference Application Note M513 for reel size information.

Block Diagram

Pin Names²

Pin #	Label
1	RF3
2, 6, 10, 12, 14	GND
3	RF1
4	V _{DD}
5	V ₁
7	V ₂
8	N/C
9	RF2
11	RF4
13	RFC
Paddle ³	GND

2. MACOM recommends connecting No Connection (N/C) pins to ground.

3. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Pin Description

Pin #	Name	description
1	RF3	RF3 Port. This pin is DC-coupled to 0 V and AC matched to 50 Ω. No DC blocking capacitor is required when the RF line potential is equal to 0 V DC.
2, 6, 10, 12, 14	GND	Internally connected to ground. Ground these pins with short connections
3	RF1	RF1 Port. This pin is DC-coupled to 0 V and AC matched to 50 Ω. No DC blocking capacitor is required when the RF line potential is equal to 0 V DC.
4	V _{DD}	Supply voltage. Place bypass capacitor as close to pin as possible.
5	V ₁	First control logic input. Internally pulled down.
7	V ₂	Second control logic input. Internally pulled down.
8	NC	Not connected internally. MACOM recommends grounding this pin with short connection.
9	RF2	RF2 Port. This pin is DC-coupled to 0 V and AC matched to 50 Ω. No DC blocking capacitor is required when the RF line potential is equal to 0 V DC.
11	RF4	RF4 Port. This pin is DC-coupled to 0 V and AC matched to 50 Ω. No DC blocking capacitor is required when the RF line potential is equal to 0 V DC.
13	RFC	RFC Port. This pin is DC-coupled to 0 V and AC matched to 50 Ω. No DC blocking capacitor is required when the RF line potential is equal to 0 V DC.
Paddle	GND	Exposed Pad. This must be connected to a large RF/DC ground island providing thermal capabilities for heat dissipation

AC Electrical Specifications:

$P_{IN} = -10 \text{ dBm}$, $V_{DD} = +3.3 \text{ V}$, $T_C = 25^\circ\text{C}$, $Z_0 = 50 \Omega$ (unless otherwise stated)

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss (All Paths)	1.0 GHz 2.5 GHz 5.0 GHz 8.0 GHz	dB	—	0.3 0.35 0.4 0.5	0.8 — — 1.1
RFC Return Loss (All Paths)	1.0 GHz 2.5 GHz 5.0 GHz 8.0 GHz	dB	—	25 26 25 18	—
RF1/2/3/4 Return Loss (All Paths)	1.0 GHz 2.5 GHz 5.0 GHz 8.0 GHz	dB	—	27 29 25 20	—
RFC - RF1 Isolation ⁴ (RF2 ON)	1.0 GHz 2.5 GHz 5.0 GHz 8.0 GHz	dB	—	54 44 36 28	—
RFC - RF3 Isolation ⁵ (RF4 ON)	1.0 GHz 2.5 GHz 5.0 GHz 8.0 GHz	dB	—	51 42 33.7 27.3	—
RFC - RF1 Isolation ⁶ (RF3 ON)	1.0 GHz 2.5 GHz 5.0 GHz 8.0 GHz	dB	—	43 35 28 25	—
RFC - RF3 Isolation ⁷ (RF1 ON)	1.0 GHz 2.5 GHz 5.0 GHz 8.0 GHz	dB	—	43 35 27 22.8	35 — — 17
Input P0.1dB	2.5 GHz 5.0 GHz	dBm	—	38.5 38	—
Input IP3	$P_{IN} = +26 \text{ dBm}$ per tone, $\Delta f = 50 \text{ MHz}$, 2.5 GHz	dBm	—	73	—
Spurious (All Paths)	RFC Port, No RF Applied < 20 MHz >20 MHz	dBm	—	-120 <-125	—

4. Due to symmetry, RFC - RF2 Isolation is similar when RF1 ON.

5. Due to symmetry, RFC - RF4 Isolation is similar when RF3 ON.

6. Due to symmetry, RFC - RF2 Isolation is similar when RF4 ON.

7. Due to symmetry, RFC - RF4 Isolation is similar when RF2 ON.

DC Electrical Specifications:
V_{DD} = +3.3 V, T_C = 25°C (unless otherwise stated)

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Supply Voltage, V _{DD}	—	V	3.15	3.3	3.45
Supply Current, I _{DD}	—	µA	—	36	—
Logic Control Voltages (pins V ₁ , V ₂)	Logic High Logic Low	V	1.15 -0.3	1.8 0	V _{DD} +0.3 0.6
Logic Control Current (pins V ₁ , V ₂)	V ₂ /V ₁ = +1.8 V V ₂ /V ₁ = 0 V	nA	—	650 1	—

Transient Electrical Specifications:
Freq = 2.5 GHz, P_{IN} = 0 dBm, V_{DD} = 3.3 V

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Switching Time, On	50% control to 90% RF (Peak Voltage)	µs	—	0.7	—
Switching Time, Off	50% control to 10% RF (Peak Voltage)	µs	—	0.5	—
Rise Time, On	10% to 90% RF (Peak Voltage)	µs	—	0.2	—
Fall Time, Off	90% to 10% RF (Peak Voltage)	µs	—	0.25	—

Control Truth Table

Path to RFC	V ₁	V ₂
RF1	0	0
RF2	1	0
RF3	0	1
RF4	1	1

Recommended Operating Conditions

Parameter	Symbol	Unit	Min.	Typ.	Max.
DC Supply Voltage	V _{DD}	V	3.15	3.3	3.45
Logic Pin Voltages	V ₁ /V ₂	V	-0.3	—	V _{DD} +0.3
Operating Temperature ⁸	T _C	°C	-40	—	+105
Junction Temperature ^{9,10}	T _J	°C	—	—	+125

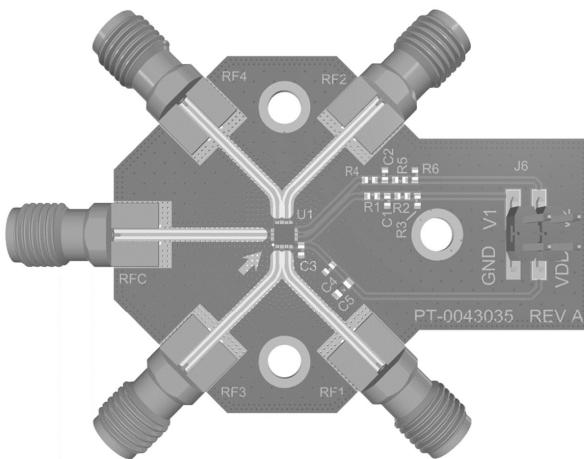
8. Operating/Case Temperature (T_C) is measured at the exposed pad.
9. Operating at nominal conditions with T_J ≤ +125°C will ensure MTTF > 1 x 10⁶ hours.
10. Junction Temperature (T_J) = T_C + Θ_{JC} * (P_{DISS}).
 Typical thermal resistance (Θ_{JC}) = 24.2 °C/W.
 P_{DISS} is the total dissipated DC and RF power.

Absolute Maximum Ratings^{11,12}

Parameter	Symbol	Unit	Min.	Max.
Input Power, 5 GHz	P _{IN}	dBm	—	38
DC Supply Voltage	V _{DD}	V	-0.5	3.6
Logic Voltages	V ₁ /V ₂	V	-0.5	4.1
Junction Temperature	T _J	°C	—	+135
Operating Temperature	T _C	°C	-40	+105
Storage Temperature	-	°C	-65	+125

11. Exceeding any one or combination of these limits may cause permanent damage to this device.
12. MACOM does not recommend sustained operation near these survivability limits.

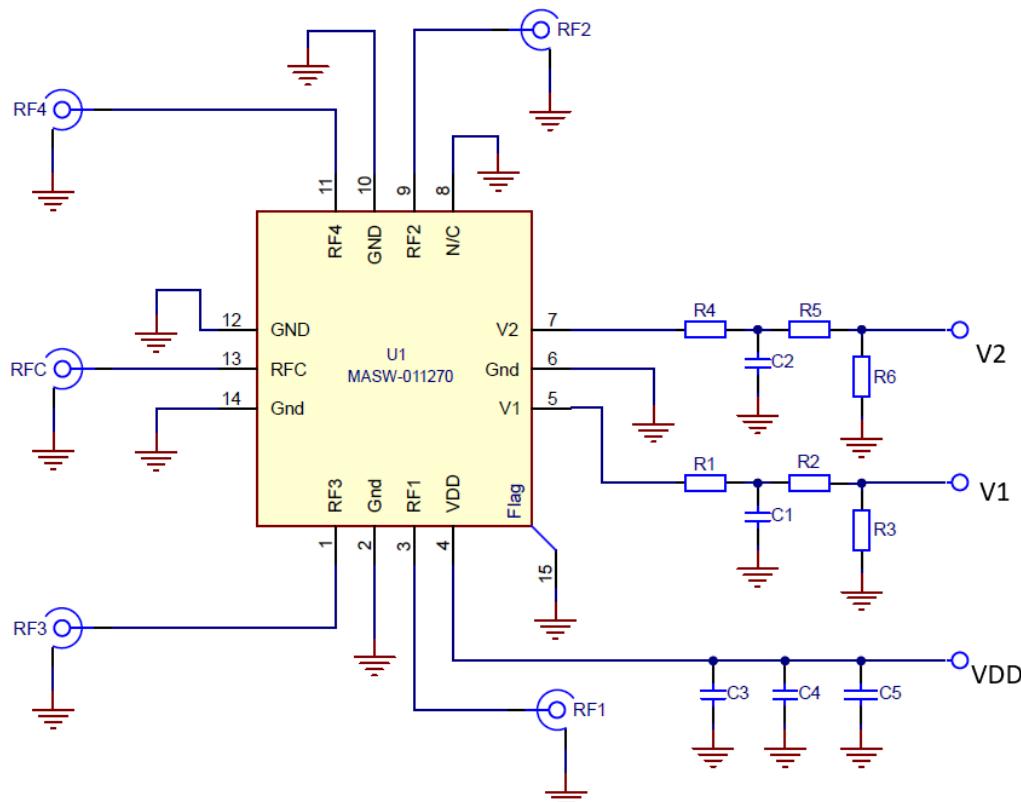
Handling Procedures


Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Parameter	Rating	Standard
Human Body Model (HBM)	1000 V (Class 1C)	ESDA/JEDEC JS-001
Charged Device Model (CDM)	1000 V (Class C3)	ESDA/JEDEC JS-002


SMB Layout & Assembly

Parts List

Part	Value	Case Style
R1, R4,	1 kΩ	0402
R2, R5	0 Ω	0402
R3, R6	Do Not Place	0402
C1, C2	10 pF	0402
C3	470 pF	0402
C4	10 nF	0402
C5	10 μF	0603
RF1 - 4, RFC	142-0761-841	SMA End Launch

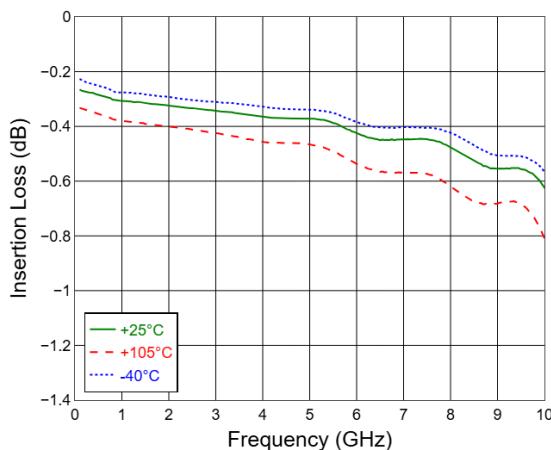
Application Schematic

Power Supplies

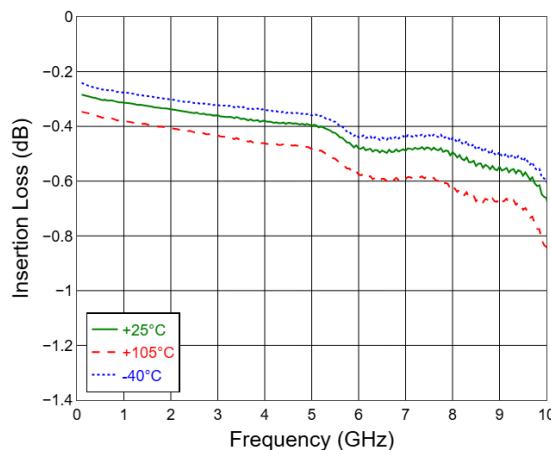
De-coupling capacitors should be placed at the V_{DD} pin to minimize noise and fast transients. Supply voltage change or transients should have a slew rate smaller than $1 \text{ V} / 10 \mu\text{s}$. In addition, all control pins should remain at 0 V ($\pm 0.3 \text{ V}$) and no RF power should be applied while the supply voltage ramps or while it returns to zero.

SP4T Reflective Switch

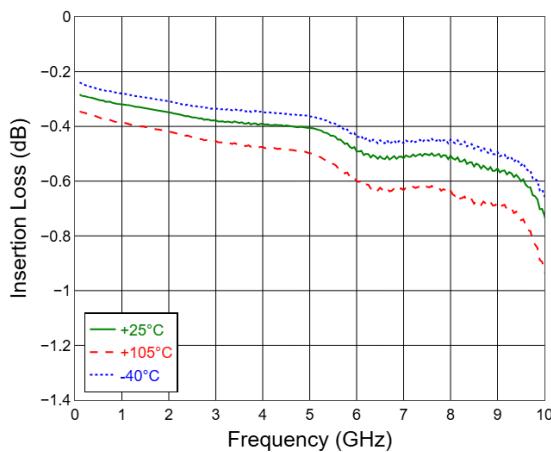
0.1 - 12 GHz

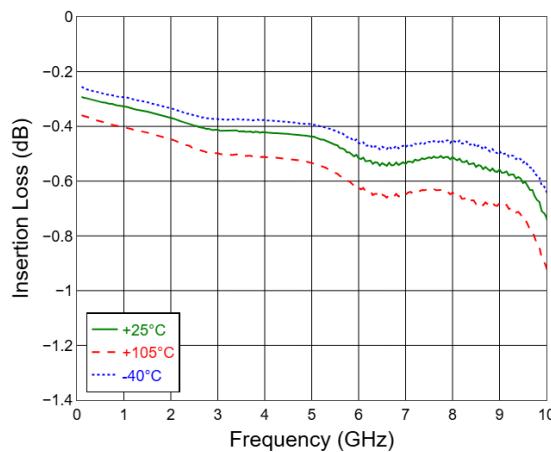

MACOM®

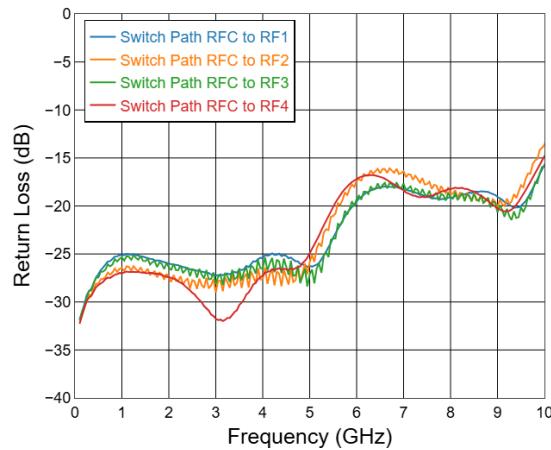
MASW-011270

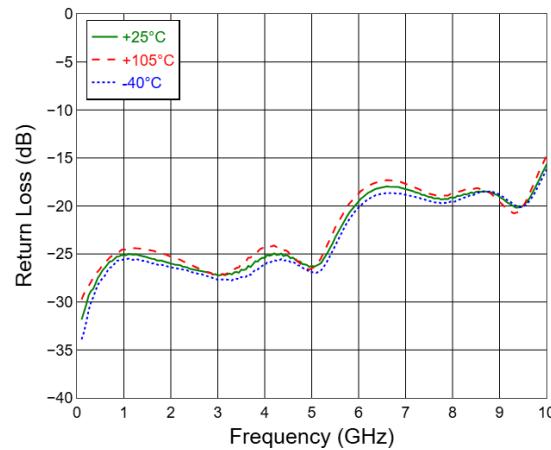

Rev. V1

Typical SMB Performance Curves: $P_{IN} = -10 \text{ dBm}$, $V_{DD} = 3.3 \text{ V}$, $T_C = 25^\circ\text{C}$, $Z_0 = 50 \Omega$

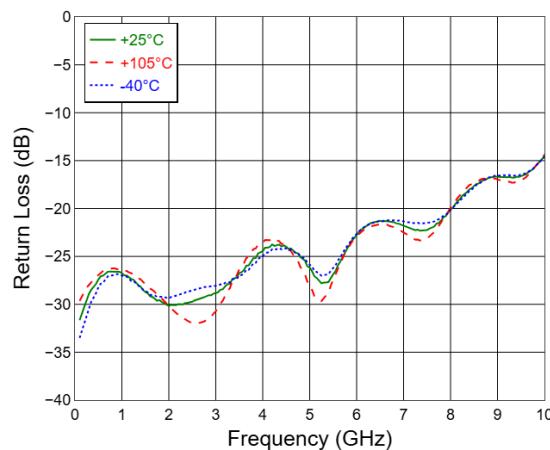

Insertion Loss¹³ over Temperature, RFC to RF1


Insertion Loss¹³ over Temperature, RFC to RF2

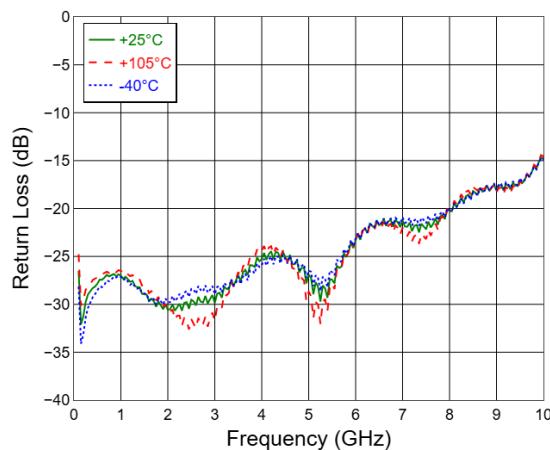

Insertion Loss¹³ over Temperature, RFC to RF3


Insertion Loss¹³ over Temperature, RFC to RF4

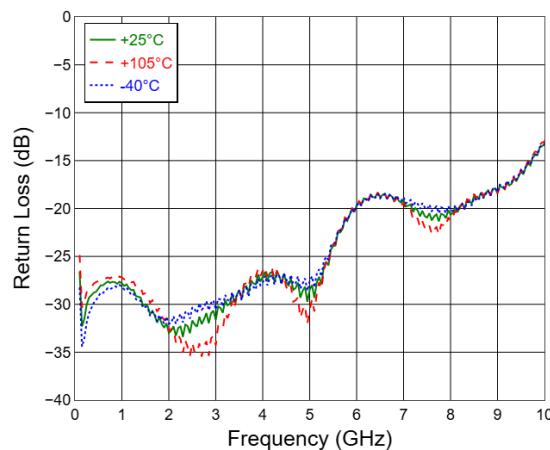
Return Loss, RFC Port, All Paths, 25°C



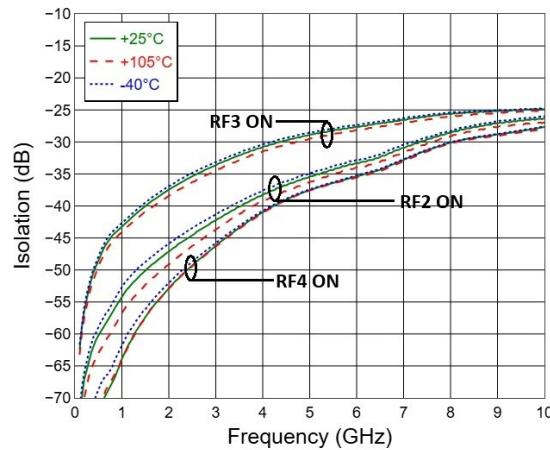
Return Loss over Temperature, RFC Port, Switch Path RFC to RF1

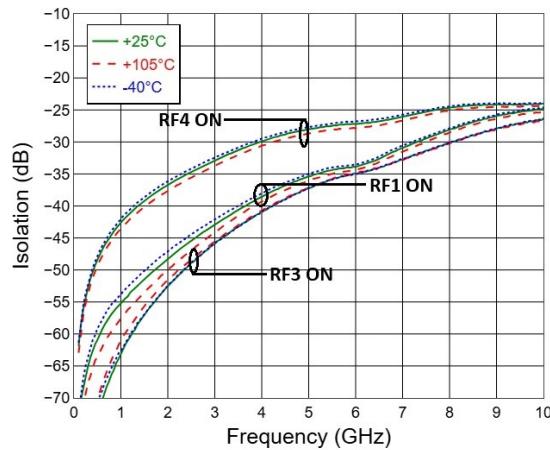


Typical SMB Performance Curves: $P_{IN} = -10 \text{ dBm}$, $V_{DD} = 3.3V$, $T_C = 25^\circ\text{C}$, $Z_0 = 50 \Omega$

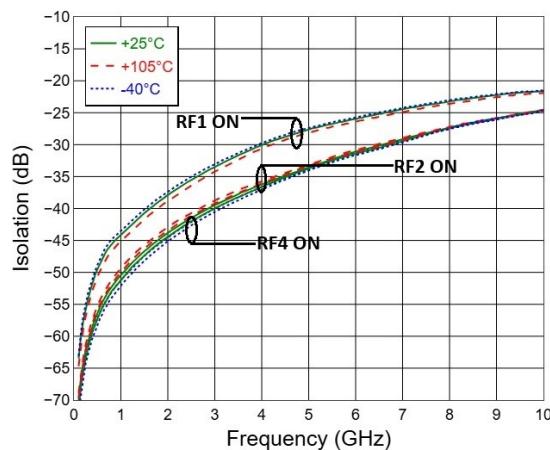

Return Loss, RF1 Port, Switch Path RFC to RF1

Return Loss, RF2 Port, Switch Path RFC to RF2

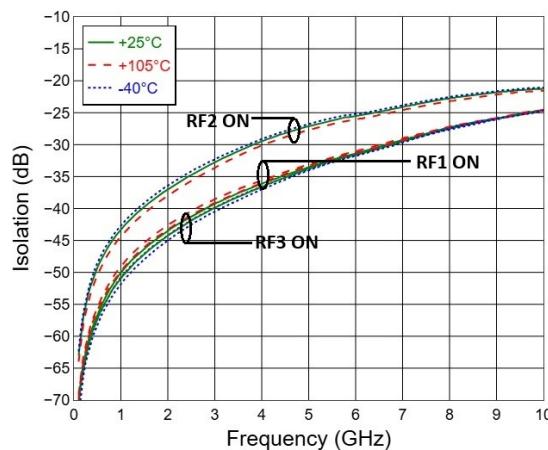

Return Loss, RF3 Port, Switch Path RFC to RF3


Return Loss, RF4 Port, Switch Path RFC to RF4

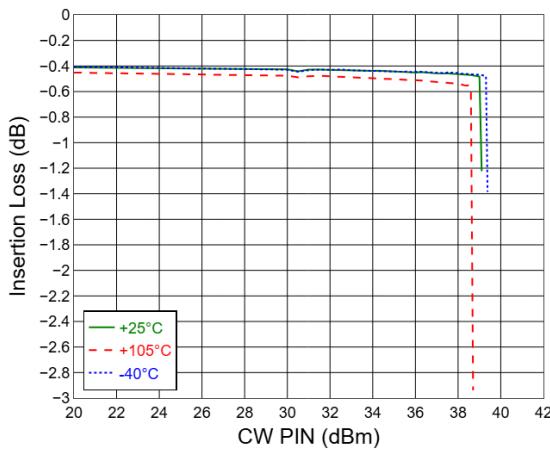
Isolation¹³ over Temperature, RFC to RF1

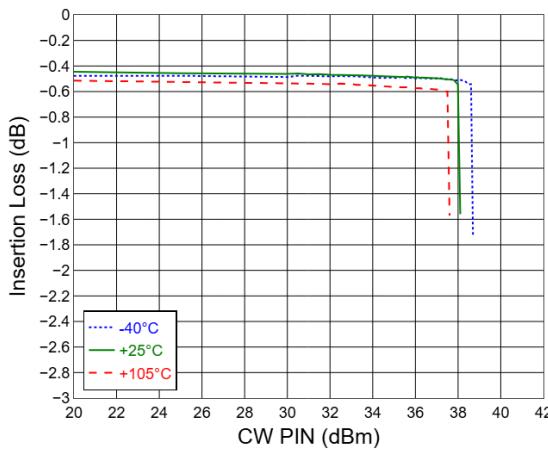


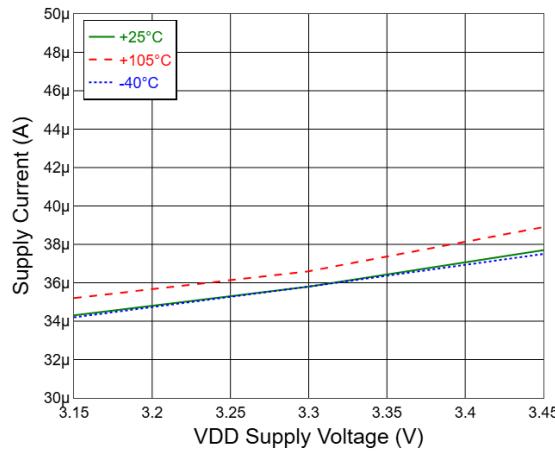
Isolation¹³ over Temperature, RFC to RF2



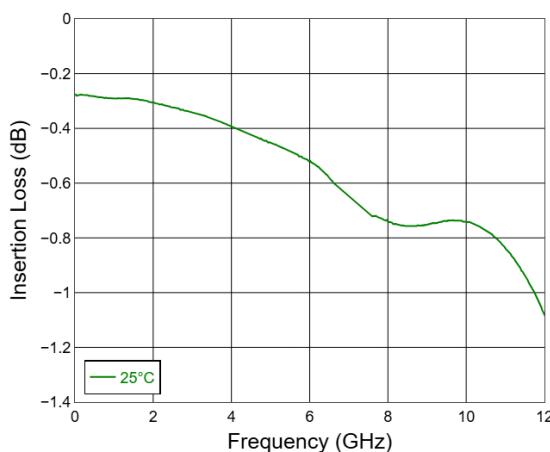
Typical SMB Performance Curves: $P_{IN} = -10 \text{ dBm}$, $V_{DD} = 3.3V$, $Z_0 = 50 \Omega$

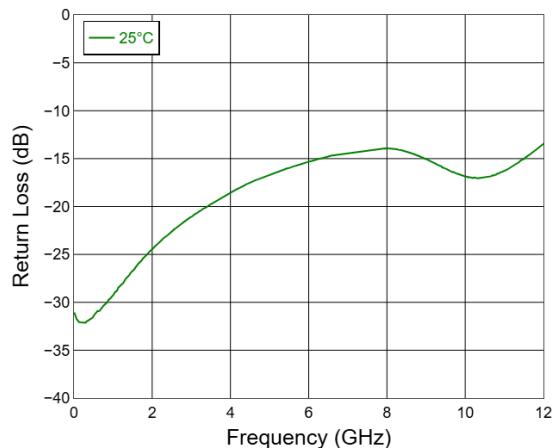

Isolation¹³ over Temperature, RFC to RF3


Isolation¹³ over Temperature, RFC to RF4

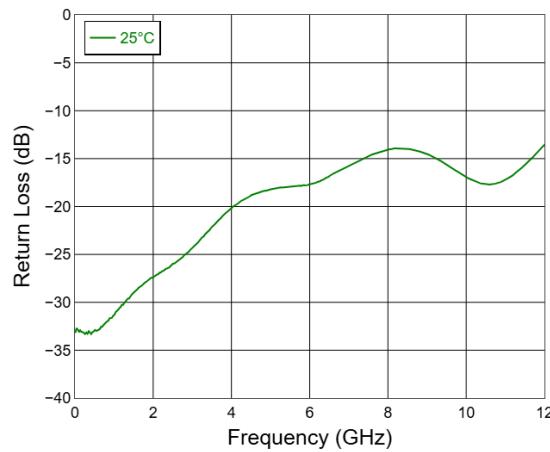

Compression¹³ Performance, 2.5 GHz (CW), RFC to RF1

Compression¹³ Performance, 5.0 GHz (CW), RFC to RF1


Supply Current


13. For insertion loss, isolation, and compression plots, RF trace and connector losses are de-embedded.

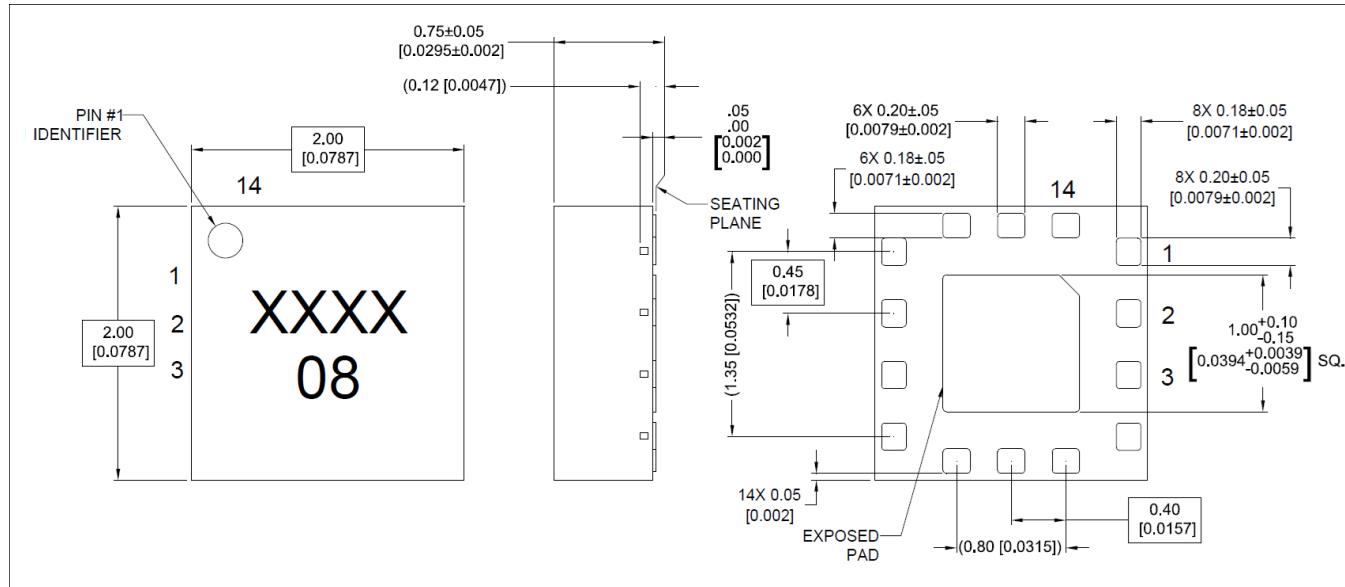
Typical Probed Performance Curves: $P_{IN} = -10 \text{ dBm}$, $V_{DD} = 3.3V$, $T_C = 25^\circ\text{C}$, $Z_0 = 50 \Omega$


Probed¹⁴ Insertion Loss, RFC to RF4.

Probed¹⁴ Return Loss, RFC Port, Switch Path RFC to RF4

Probed¹⁴ Return Loss, RF4 Port, Switch Path RFC to RF4

14. Raw S-parameter data captured from unit mounted on SMB and RF probes placed close to pins.


SP4T Reflective Switch 0.1 - 12 GHz

MACOM[®]

MASW-011270

Rev. V1

Lead-Free 2 mm 14-Lead PQFN[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Plating is NiPdAu over Copper.

Revision History

Rev.	Date	Change Description
V1	Sept 2025	Final Release

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.