SPDT Absorptive Switch 9 kHz - 13 GHz

MASW-011248

Rev. V1

Features

- CW Power Handling: 36 dBm
- Insertion Loss:

0.5 dB @ 3 GHz 0.7 dB @ 8 GHz

Isolation:

60 dB @ 3 GHz 43 dB @ 8 GHz

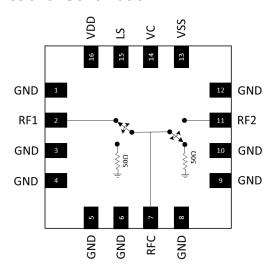
- Return Loss at Each RF Port: 18 dB
- Pulsed Input P0.1dB: 39 dBm
- Input IP3: 66 dBm
- 3 mm, 16 lead PQFN Package
- RoHS* Compliant

Applications

- Test and Measurement
- Automated Test Equipment
- Microwave Radios & VSAT
- Defense Radar and ECMs
- General Purpose Tx/Rx Switch

Description

The MÅSW-011248 is an absorptive wideband single pole double throw (SPDT) switch with 0.7 dB of insertion loss and 43 dB isolation at 8 GHz. The RF output ports are terminated in 50 Ω in the isolated path. The power handling capability is 36 dBm CW. The input and output return losses in the thru path are typically 18 dB. The on-die negative bias generator allows single positive bias operation, and can be disabled if spurious-free performance is desired.


The MASW-011248 is manufactured on a Silicon-on -Insulator process. The 3 x 3 mm QFN package is lead free and RoHS compliant.

Ordering Information^{1,2}

Part Number	Package
MASW-011248-TR1000	1000 Piece Reel
MASW-011248-TR3000	3000 Piece Reel
MASW-011248-SMB	Sample Board

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 5 loose parts.

Functional Schematic

Pin Configuration³

Pin #	Pin Name	Description	
1,3-6,8-10,12	GND	Ground	
2	RF1 ⁴	RF Input/Output 1	
7	RFC ⁴	Common RF Input/Output	
11	RF2 ⁴	RF Input/Output 2	
13	VSS ⁵	-3.3 V or Ground	
14	VC	Control	
15	LS ⁶	Level Select	
16	VDD ⁷	Positive Bias	

- 3. The exposed pad centered on the package bottom must be connected to RF, DC, and thermal ground.
- RF ports are DC-coupled to GND. There are no internal DC blocking capacitors.
- Connect VSS to ground to enable on-die negative voltage generator.
- 6. LS is used to configure control pin logic levels for the convenience of application.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V1

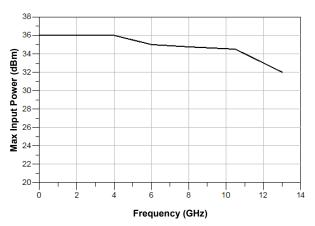
Electrical Specifications 7 : VDD = +3.3 V, VSS = 0 V or -3.3 V, T_{BASE} = 25 $^{\circ}$ C, Z_0 = 50 Ω

1.00 1.00	Parameter Test Conditions		Units	Min.	Тур.	Max.
Isolation, RFC to RF1/2	Insertion Loss, RFC to RF1/2	10 MHz - 3 GHz 3 GHz - 8 GHz	dB	_	0.50 0.70	1.00 1.05
Isolation, between RF1 and RF2 10 MHz - 3 GHz 3 GHz - 8 GHz 3 GHz - 3 GHz 3 GHz - 3 GHz 3 GHz - 3 GHz 10 MHz - 3 GHz 3 GHz - 8 GHz 17 17 18 17 17 18 17 18 17 18 17 18 17 18 18	Isolation, RFC to RF1/2	10 MHz - 3 GHz 3 GHz - 8 GHz	dB	33	60 43	1
RFC Return Loss 3 GHz - 3 GHz 3 GHz - 3 GHz 17	Isolation, between RF1 and RF2	10 MHz - 3 GHz 3 GHz - 8 GHz	dB	_	54 45	_
RF1/RF2 Return Loss, Thru Port 10 MHz - 3 GHz 3 GHz 8 GHz 8 GHz 4 18 18 20 dB — 24 18 20 — — — — — — 18 20 —	RFC Return Loss	10 MHz - 3 GHz 3 GHz - 8 GHz	dB	_	25 18	1
RF1/RF2 Return Loss, Isolated Port 10 MHz - 3 GHz 3 GHz - 13 GHz 21	RF1/RF2 Return Loss, Thru Port	10 MHz - 3 GHz 3 GHz - 8 GHz	dB	_	24 18	
Input IP2 Response Respon	RF1/RF2 Return Loss, Isolated Port	10 MHz - 3 GHz 3 GHz - 8 GHz	dB	_	27 23	
Input IP2 P_{IN} = +20 dBm, Δf = 1 MHz dBm — 120 — Input IP3 834 MHz, 1950 MHz and 2700 MHz PIN = +20 dBm, Δf = 1 MHz dBm — 66 — T_{ON}/T_{OFF} 50% control to 90%/10% RF μs — 4.5 6.5 Settling time 50% control to 0.05 dB final value μs — 8.7 12.5 Switching Rate ⁸ VSS = 0 V kHz — — 25 Logic Voltage Input High (V _{IH}) ⁹ Input Low (V _{IL}) V 1.2 1.8 3.45 (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Input P0.1 dB, pulse		dBm	_	39	_
Imput IPS $P_{IN} = +20 \text{ dBm}$, $\Delta f = 1 \text{ MHz}$ $\Delta f = 1 \text$	Input IP2		dBm	_	120	_
Settling time 50% control to 0.05 dB final value μs — 8.7 12.5 Switching Rate ⁸ VSS = 0 V kHz — — 25 Logic Voltage Input High $(V_{IH})^9$ V 1.2 1.8 3.45 Input Low (V_{IL}) V 1.2 1.8 3.45 0.0 0.0 0.0 0.60 Logic Pin Current (VC) VC = +1.8 V μ A — — 7 Voltage Supply, VDD VSS = 0 V VSS = -3.3 V V +2.3 +2.6 +3.3 +3.3 +5.5 +5.5 Supply Current, VDD VSS = 0 V VSS = -3.3 V μ A — 47 14 80 25 Voltage Supply, VSS VSS = -3.3 V V -3.6 -3.3 -2.6	Input IP3		dBm	_	66	1
Switching Rate ⁸ VSS = 0 V kHz — — 25 Logic Voltage Input High (V _{IH}) ⁹ Input Low (V _{IL}) V 1.2 0.0 0.0 0.0 0.0 0.60 1.8 0.0 0.0 0.60 Logic Pin Current (VC) VC = +1.8 V μ A — — 7 Voltage Supply, VDD VSS = 0 V VSS = -3.3 V V +2.3 0.0 0.0 0.0 0.0 0.0 0.00 +5.5 0.0 0.0 0.0 0.0 0.00 Supply Current, VDD VSS = 0 V VSS = -3.3 V V +2.3 0.0 0.0 0.0 0.0 0.0 0.00 +5.5 0.0 0.0 0.0 0.00 Voltage Supply, VSS VSS = -3.3 V V +2.3 0.0 0.0 0.0 0.0 0.00 +5.5 0.0 0.00 Voltage Supply, VSS VSS = -3.3 V V -3.6 0.0 0.0 0.0 0.00 -3.3 0.0 0.00	T _{ON} /T _{OFF}	50% control to 90%/10% RF	μs	_	4.5	6.5
Logic Voltage Input High (V _{IH}) ⁹ V V 1.2 0.0 1.8 0.0 3.45 0.60 Logic Pin Current (VC) VC = +1.8 V μA — — 7 Voltage Supply, VDD VSS = 0 V VSS = -3.3 V V +2.3 +3.3 +5.5 +5.5 Supply Current, VDD VSS = 0 V VSS = -3.3 V μA — 47 80 25 Voltage Supply, VSS VSS = -3.3 V V -3.6 -3.3 -2.6	Settling time	50% control to 0.05 dB final value	μs	_	8.7	12.5
Logic Voltage Input Low (V _{IL}) V 0.0 0.0 0.60 Logic Pin Current (VC) VC = +1.8 V μA — — 7 Voltage Supply, VDD VSS = 0 V VSS = -3.3 V V +2.3 +2.6 +3.3 +3.3 +5.5 +5.5 Supply Current, VDD VSS = 0 V VSS = -3.3 V μA — 47 14 80 25 Voltage Supply, VSS VSS = -3.3 V V -3.6 -3.3 -2.6	Switching Rate ⁸	VSS = 0 V	kHz	_	_	25
Voltage Supply, VDD VSS = 0 V VSS = -3.3 V V $+2.3$ +2.6 $+3.3+3.3$ $+5.5+5.5$ Supply Current, VDD VSS = 0 V VSS = -3.3 V μ A — 47 14 80 25 Voltage Supply, VSS VSS = -3.3 V V -3.6 -3.3 -2.6	Logic Voltage	Input High (V _{IH}) ⁹ Input Low (V _{IL})	V			
Voltage Supply, VDD VSS = -3.3 V V +2.6 +3.3 +5.5 Supply Current, VDD VSS = 0 V VSS = -3.3 V V -47 80 25 Voltage Supply, VSS VSS = -3.3 V V -3.6 -3.3 -2.6	Logic Pin Current (VC)	VC = +1.8 V	μA	_	_	7
Supply Current, VDD VSS = -3.3 V μA — 14 25 Voltage Supply, VSS VSS = -3.3 V V -3.6 -3.3 -2.6	Voltage Supply, VDD		V			
	Supply Current, VDD			_		
Supply Current, VSS VSS = -3.3V µA — -8.9 —	Voltage Supply, VSS	VSS = -3.3 V	V	-3.6	-3.3	-2.6
	Supply Current, VSS VSS = -3.3V		μA	_	-8.9	_

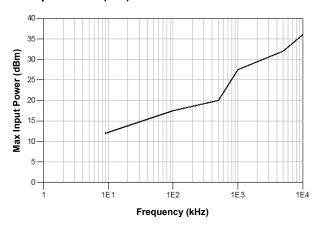
^{7.} RF performance will degrade when VDD is less than 2.6 V.

^{8.} For higher switching rate and spurious free operation, apply -3.3 V to VSS to disable internal negative voltage generator. Switching rate is defined as 1 over the time between two consecutive switching events.

^{9.} For VDD < +3.3 V, control voltage shall not be higher than VDD + 0.3 V.


Rev. V1

Maximum Operating Ratings


Parameter	Maximum
Input Power, 10 MHz to 4 GHz, RFC to RF1/RF2 Thru Path ¹⁰	36 dBm
Input Power, 800 kHz to 13 GHz, RF1/RF2 Terminated Path ¹⁰	26 dBm
VDD	-0.3 to +5.25 V
VC and LS	Note 11
Operating Temperature ¹²	-40 to +85°C

- 10.T_{PADDLE} = 85 °C. See power derating curves for details.
- 11. The minimum input voltage for VC and LS is -0.3 V. The maximum input voltage for VC and LS is the lower value of VDD+0.3 V and +3.45 V.
- 12. Guarantees 10 years lifetime.

Max Input Power (CW)

Max Input Power (CW) below 10 MHz

Absolute Maximum Ratings 13,14,15

Parameter	Absolute Maximum
Input Power, 10 MHz to 4 GHz, RFC to RF1/RF2 Thru Path ¹⁰	37 dBm
Input Power, 800 kHz to 8 GHz, RF1/RF2 Terminated Path ¹⁰	28 dBm
VDD	-0.3 to +5.5 V
VSS	-3.6 to +0.3 V
VC and LS	Note 16
Junction Temperature ^{17,18}	+135°C

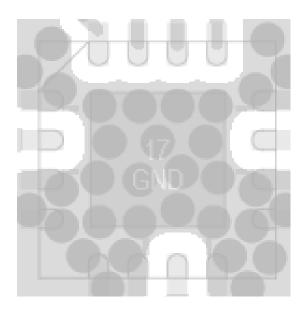
- 13. Exceeding any one or combination of these limits may cause permanent damage to this device.
- 14. MACOM does not recommend sustained operation near these survivability limits.
- 15. Based on testing with input power applied for 30 seconds.
- 16. The absolute minimum input voltage for VC and LS is -0.3 V. The absolute maximum input voltage for VC and LS is the lower value of VDD+0.3 V and +3.6 V.
- 17. Junction Temperature (T_J) = T_C + Θ jc * (V * I) Typical thermal resistance (Θ jc) = 18 °C/W.
- 18. Thermal resistance cannot be used to determine maximum input power over operating temperature. The maximum input power and power de-rating curves apply to the whole operating temperature ranges.

Truth Table

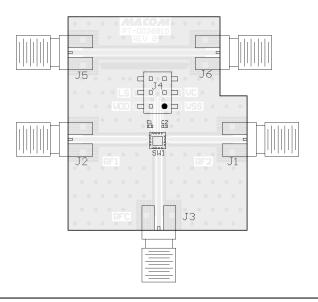
Control Input		Condition of Switch		
LS	vc	RFC - RF1 Path	RFC - RF2 Path	
V _{IL}	V _{IL}	Off	On	
V _{IL}	V _{IH}	On	Off	
V _{IH}	V _{IL}	On	Off	
V _{IH}	V _{IH}	Off	On	

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1C and CDM Class C3 devices.

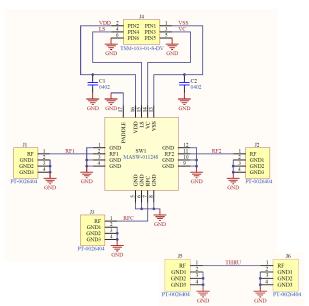


Rev. V1


Recommended PCB Footprint

The evaluation PCB of the MASW-011248 is a 4-layer board with 16 mil Rogers RO4003C dielectric material on top layer and 1 oz. copper on primary and secondary metal layers. For this stack-up, the recommended PCB footprint is shown below.

The 50Ω RF transmission lines are CPWG of 28.5 mil width with 10 mil gap.

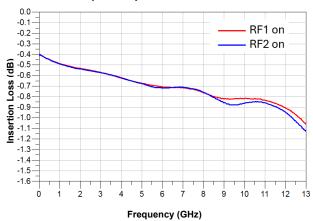

Evaluation Board Layout

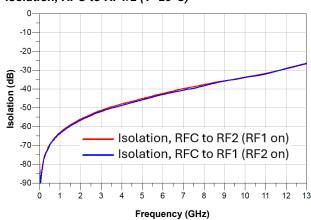
Power Supplies

De-coupling capacitors should be placed at the VDD and VSS supply pins to minimize noise and fast transients. Supply voltage change or transients should have a slew rate smaller than 1 V / 30 μs for VDD equal to or less than 3.3 V and smaller than 1 V / 100 us for VDD equal to 5.5 V. Ramp VDD before VSS. In addition, all control pins should remain at 0 V (+/- 0.3 V) and no RF power should be applied while the power supplies ramp or while they return to zero.

Application Schematic

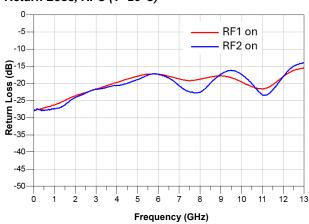
Parts List

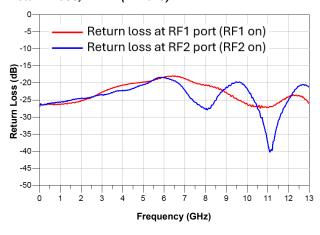

Part	Value	Case Style	Description
C1, C2	0.1 μF	0404	capacitor
J1-J3, J5, J6	Johnson End Launch Connector, 142-0761-871 (16 mil substrate)		
J4	Standard 2-array 6 pin SMT header		

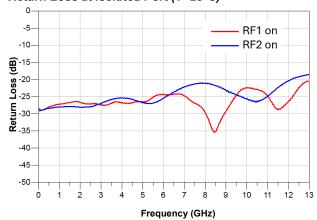

Rev. V1

Typical Performance Curves


Insertion Loss (T=25°C)

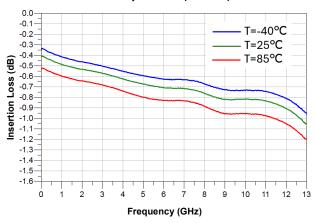

Isolation, RFC to RF1/2 (T=25°C)

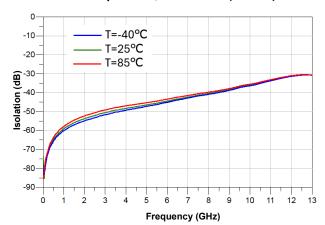

Isolation, RF1 to RF2 (T=25°C)


Return Loss, RFC (T=25°C)

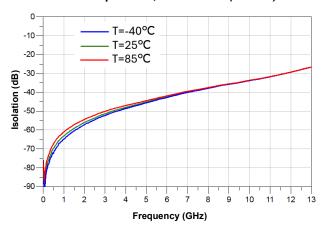
Return Loss, RF1/2 (T=25°C)

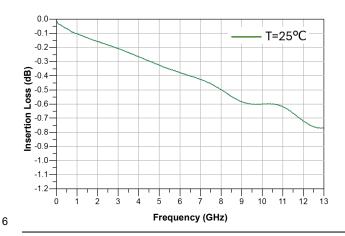
Return Loss at Isolated Port (T=25°C)

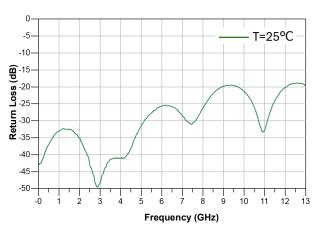



Rev. V1

Typical Performance Curves


Insertion Loss vs Temperature (RF1 on)


Isolation vs Temperature, RF1 to RF2 (RF1 on)

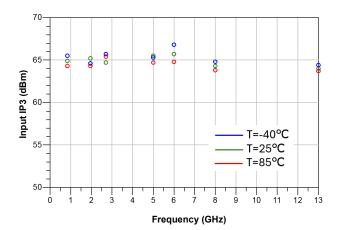

Isolation vs Temperature, RFC to RF2 (RF1 on)

Evaluation PCB losses

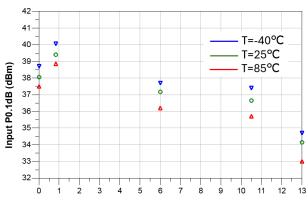
Evaluation PCB Return loss

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

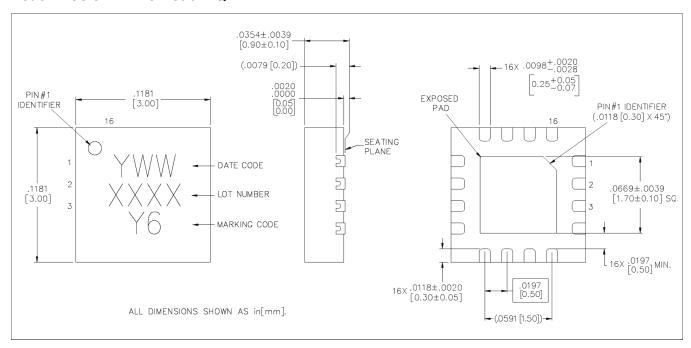

Rev. V1

Typical Performance Curves


Input P0.1dB (Pulsed) vs Frequency over Temperature Pulse width=1us, duty cycle=0.1%

Input IP3 vs Frequency over Temperature

Input P0.1dB (CW) vs Frequency over Temperature



Frequency (GHz)

Rev. V1

Lead-Free 3 mm 16-Lead PQFN[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Lead and pad finish: NiPdAu

Revision History

Rev	Date	Change Description
V1	9/01/25	Initial Production Release

SPDT Absorptive Switch 9 kHz - 13 GHz

MASW-011248

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.