

MASW-011222-DIE

Rev. V1

Features

Insertion Loss: 1 dBIsolation: 60 dB

Input P0.1dB: 33.5 dBmInput IP3: 65 dBm

Return Loss at Each RF Port: 15 dB

Power Handling: 31 dBmNo Low Frequency Spurious

• Compatible with 1.8, 2.5, and 3.3 V CMOS Logic

• Cu-pillar bumped bare die

RoHS* Compliant

• Die Size: 2380 x 1905 μm

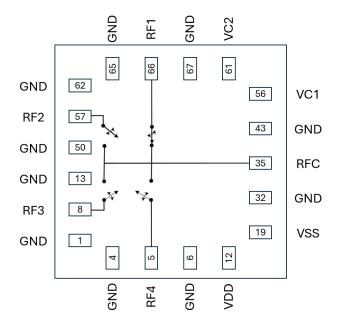
Applications

- Aerospace and defense
- Test & Measurement
- ISM, Multi Market

Description

The MASW-011222-DIE is a reflective, ultra wideband single pole four throw (SP4T) switch with 1 dB of insertion loss at 10 GHz. The power handling capability is up to 31 dBm. The input and output return losses in the thru path are 15 dB typical. The logic levels are compatible with standard 1.8, 2.5, or 3.3 V CMOS.

The MASW-011222-DIE is designed for test and measurement and industrial, scientific, aerospace and defense applications.


The MASW-011222-DIE is manufactured on a Silicon-on-Insulator process. The die comes with Copper pillars and it can be flipped and soldered to the appropriate substrate.

Ordering Information¹

Part Number	Package
MASW-011222-DIE100	100 pc tape & reel
MASW-011222-DIE500	500 pc tape & reel

1. Reference Application Note M513 for reel size information.

Functional Schematic (bump up)

Pin Configuration²

Pin #	Label	Description
35	RFC ³	RF Input/Output 1
66	RF1 ³	RF Input/Output 1
57	RF2 ³	RF Input/Output 2
8	RF3 ³	RF Input/Output 3
5	RF4 ³	RF Input/Output 4
56	VC1	Digital control voltage
61	VC2	Digital control voltage
12	V_{DD}	Positive supply voltage
19	V _{SS}	Negative supply voltage
7,28,49,68	AGND	Ground these pins
1-4,6,9-11,13-18, 20-27,29-34,36-48, 50-55,58-60,62-65,67	RF GND	Ground these pins

- All the ground pillars must be connected to RF, DC, and thermal ground.
- RF ports are DC-coupled to GND. There are no internal DC blocking capacitors.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MASW-011222-DIE Rev. V1

Pin Description

Pin#	Name	Description			
35	RFC	Common RF Input/Output			
66	RF1	RF Input/Output 1			
57	RF2	RF Input/Output 2			
8	RF3	RF Input/Output 3			
5	RF4	RF Input/Output 4			
56	VC1	Digital Control voltage. Pulled down to GND with 100 $k\Omega$ resistor internally.			
61	VC2	Digital Control voltage. Pulled down to GND with 100 $k\Omega$ resistor internally.			
12	V_{DD}	Positive supply voltage. No special sequencing required.			
19	V _{SS}	Negative supply voltage. No special sequencing required.			
7,28,49,68	AGND	Ground these pins. Provide low thermal resistance to the Exposed Paddle center pad.			
1-4,6,9-11,13-18, 20-27,29-34,36-48, 50-55,58-60,62-65,67	RF GND	Ground these pins. Provide low thermal resistance to the Exposed Paddle center pad.			

MASW-011222-DIE Rev. V1

RF Electrical Specifications^{4,5}: V_{DD} = +4 V, V_{SS} = -4 V, V_{C1} / V_{C2} = 0 V or 1.8 V, T_{C} = 25°C, Z_{0} = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Insertion Loss	2 GHz 10 GHz 18 GHz	dB	_	0.50 0.85 1.50	 1.50
Isolation, Between RF1 / RF2 / RF3 / RF4	7 kHz - 18 GHz	dB	_	60	_
Isolation, RFC to RF1 / RF2 / RF3 / RF4	7 kHz - 18 GHz	dB	_	60	_
RFC Return Loss	7 kHz - 18 GHz	dB	_	15	_
RF1/RF2/RF3/RF4 Return Loss, Thru Port	7 kHz - 18 GHz	dB	_	15	_
Input P0.1dB	6 GHz - 15 GHz	dBm	_	33.5	_
Input IP3	1 GHz - 18 GHz Two tone, P _{IN} / tone = +15 dBm	dBm	_	65	_
T _{ON}	50% control to 90% RF	ns	_	85	_
T _{RISE}	10% to 90% RF	ns	_	20	
T _{OFF}	50% control to 10% RF	ns	_	60	
T _{FALL}	90% to 10% RF	ns	_	10	_

^{4.} Parameters are measured on a laminate where the device is mounted on and de-embedded to the edge of the device.

DC Electrical Specifications: $V_{DD} = +4 \text{ V}$, $V_{SS} = -4 \text{ V}$

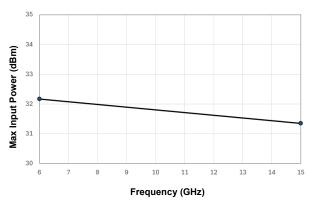
Parameter	Test Conditions	Units	Min.	Тур.	Max.
Voltage Supply, VDD	_	V	+3.15	+4.0	+4.15
Voltage Supply, VSS	_	V	-4.15	-4.0	-3.15
Logic Voltage, Input Low (V _{IL})	_	V	0.0	_	+0.8
Logic Voltage, Input High (V _{IH})	_	V	+1.2	_	V_{DD}
Supply Current, V _{DD}	_	mA	_	0.35	_
Supply Current, V _{SS}	_	mA	_	0.57	_
Logic Pin Current (VC1 / VC2)	Pulled down to GND with 100 kΩ resistor, 1.8 V on pin	μA	_	12	_

^{5.} Parameters in bold underline are tested in production.

^{6.} Operating temperature is defined at the back of the die.

Rev. V1

Recommended Operating Conditions


Parameter	Symbol	Unit	Min.	Тур.	Max.
Input Power @ RFC, RF1 - RF4 @ T _C = 85°C, 6 GHz	P _{IN}	dBm	_	_	31
Junction Temperature	TJ	°C	-40	_	125
Operating Temperature ⁶	T _C	°C	-40	_	85
Positive DC Supply	V _{DD}	V	3.15	_	4.15
Negative DC Supply	V _{SS}	V	-4.15	_	-3.15
Logic Control Voltage	V1, V2	V	-0.3	_	VDD

Absolute Maximum Ratings^{7,8}

Parameter	Symbol	Unit	Min.	Max.
Input Power @ RFC, RF1 - RF4 @ T _C = 85°C, 6 GHz	P _{IN}	dBm	_	32
Positive DC Supply	V_{DD}	V	_	4.4
Negative DC Supply	V _{SS}	V	-4.4	_
Junction Temperature	TJ	°C	_	135
Storage Temperature	T _{STG}	°C	-65	125
Logic Control Voltage	V1, V2	V	-0.3	4.5

^{7.} Exceeding any one or combination of these limits may cause permanent damage to this device.

Max Input Power

Truth Table

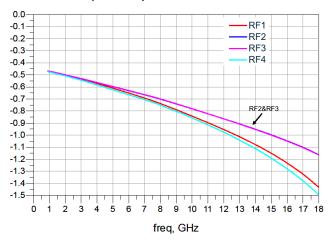
Control 1	Control 2	Condition of Switch					
VC1	VC2	RF1	RF2	RF3	RF4		
V _{IL}	V _{IL}	On	Off	Off	Off		
V _{IH}	V _{IL}	Off	On	Off	Off		
V _{IL}	V _{IH}	Off	Off	On	Off		
V _{IH}	V _{IH}	Off	Off	Off	On		

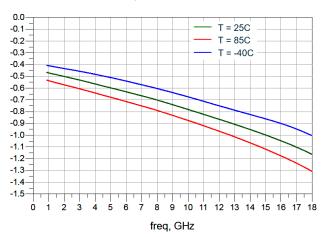
Handling Procedures

Please observe the following precautions to avoid damage:

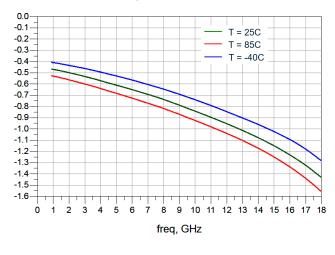
Static Sensitivity

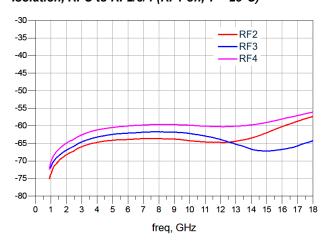
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

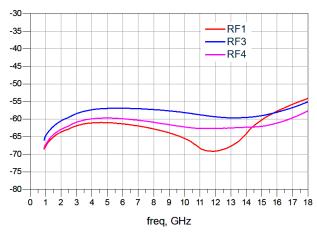

^{8.} MACOM does not recommend sustained operation near these survivability limits.

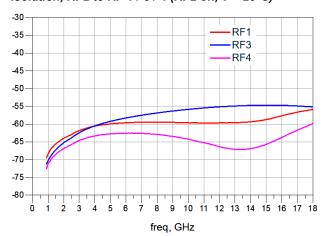

Rev. V1

Typical Performance Curves


Insertion Loss (T = 25C°)


Insertion Loss vs Temp (RF2 on)


Insertion Loss vs Temp (RF1 on)

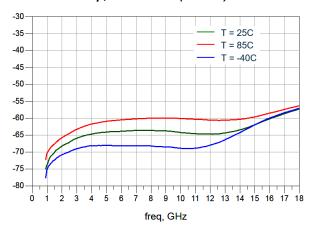

Isolation, RFC to RF2/3/4 (RF1 on, T = 25°C)

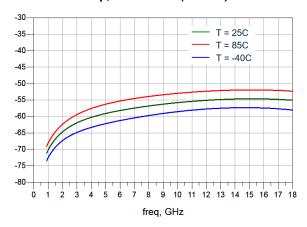
Isolation, RFC to RF1 / 3 / 4 (RF2 on, T = 25°C)

Isolation, RF2 to RF 1/3/4 (RF2 on, T = 25°C)

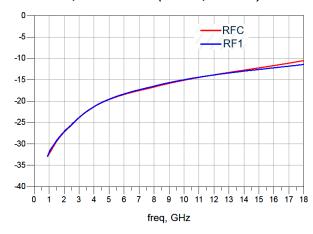
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

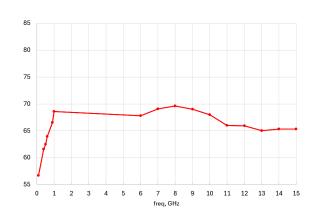

5

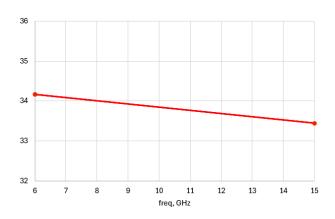

Rev. V1

Typical Performance Curves

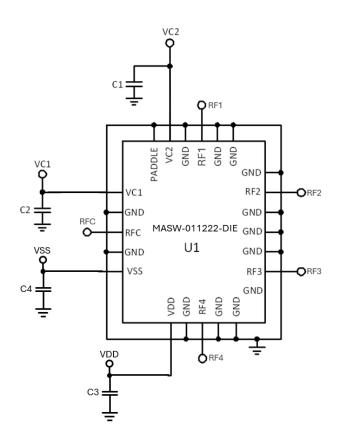

Isolation vs Temp, RFC to RF2 (RF1 on)

Isolation vs Temp, RF2 to RF3 (RF2 on)


Return Loss, RF1 and RFC (RF1 on, T = 25°C)


Return Loss, RF2 and RFC (RF2 on, T = 25°C)

Input IP3 @ 25°C (dBm)

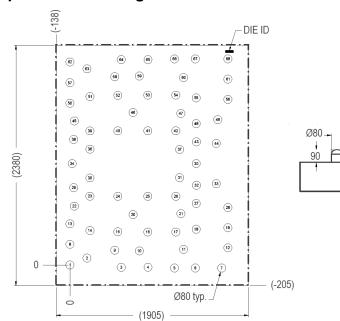

Input P0.1dB (dBm)

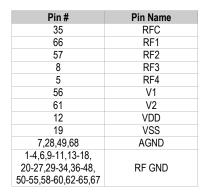
Rev. V1

Application Schematic

Supply and I/O Sequencing

All logic pins should be set to 0 V before ramping up or down the supply voltages. V_{DD} and V_{SS} can ramp in any order.


Parts List


Part	Value	Case Style
U1	MASW-011222-DIE	Bumped Die
C1, C2	Capacitor, 5 pF, 16 V	0402
C3, C4	Capacitor, 0.01 µF, 50 V	0402

Rev. V1

Chip Outline Drawing 9,10,11,12

- 9. Unless otherwise specified, all dimensions shown are μm with a tolerance of $\pm 5 \mu m$.
- 10. Die thickness is 203 \pm 10 μ m.

-SnAg1.8 solder

-Cu Pillar

- 11. Die size reflects final dimensions.
- 12. Copper pillar with SnAa1.8 solder plate shall be 90 µm max. protrusion.

Bump Location (X, Y)

BUMP	Х	Υ	BUMP	Х	Y	BUMP	Х	Y	BUMP	Χ	Y
1	0	0	18	1249.865	354.745	35	1250.2	1004.81	52	475.185	1679.62
2	168.35	67.945	19	1565	369.81	36	197.64	1148.185	53	771.405	1682.035
3	508.85	-23.38	20	625.57	499.55	37	1085.905	1144.87	54	1048.645	1682.035
4	773.045	-22.415	21	1098.15	508.985	38	36.65	1243.835	55	1249.865	1654.875
5	1035	-30.19	22	43.435	583.06	39	197.225	1328.325	56	1565	1639.81
6	1240.975	-30.19	23	197.225	681.295	40	475.24	1329.24	57	0	1804.81
7	1503.635	-30.19	24	475.24	680.38	41	771.405	1329.24	58	444.875	1863.78
8	0	204.81	25	771.405	680.38	42	1048.645	1329.24	59	688.11	1870.665
9	444.875	145.84	26	1048.645	680.38	43	1252.29	1220.61	60	1125.065	1855.46
10	688.11	138.955	27	1249.865	609.435	44	1450.2	1204.81	61	1565	1839.81
11	1125.065	154.16	28	1565	569.81	45	43.435	1426.56	62	0	2009.62
12	1565	169.81	29	36.65	765.785	46	625.57	1510.07	63	168.35	1941.675
13	-0.11	408.175	30	197.64	861.435	47	1098.15	1500.635	64	508.85	2033
14	197.945	342.31	31	1085.905	864.75	48	1249.865	1400.185	65	773.045	2032.035
15	475.185	330	32	1252.29	789.01	49	1465	1439.81	66	1035	2039.81
16	771.405	327.585	33	1450.2	804.81	50	-0.11	1601.445	67	1240.975	2039.81
17	1048.645	327.585	34	22.485	1004.815	51	197.945	1667.31	68	1565	2039.81

Revision History

Rev.	Date	Change Description
V1	Sep 2025	Final release

MASW-011222-DIE

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.