Features

- $0.4 \mathrm{~dB} @ 4 \mathrm{GHz}$ TX Insertion Loss
- $0.54 \mathrm{~dB} @ 4 \mathrm{GHz}$ RX Insertion Loss
- 41 dBm Input P0.1dB on TX Path
- 18 dB Typical Return Loss at Each RF Port
- Compatible with 1.8 V CMOS Logic
- 3 mm 16-Lead PQFN Package
- RoHS* Compliant

Applications

- Wireless Infrastructure
- ISM
- Multi Market

Description

The MASW-011191 is a single pole double throw (SPDT) switch with 0.4 dB of insertion loss in the TX path and 0.54 dB insertion loss in the RX path @ 4 GHz . The TX path is capable of handling 10 W input power. The input and output return losses in the thru path are typically 20 dB . The logic levels are standard 1.8 V CMOS. Only a single positive supply of +5 V is required.

The MASW-011191 is designed for transmit/receive applications between 500 MHz and 7.5 GHz . The 3 mm PQFN package is lead free and RoHS compliant. 5 dB of insertion loss in the TX path and 0.5 dB insertion loss in the RX path. The TX path is capable of handling 10 W input power. The input and output return losses in the thru path are typically 18 dB . The logic levels are standard 1.8 V CMOS. Only a single positive supply of +5 V is required.

The MASW-011191 is designed for transmit/receive applications between 500 MHz and 7.5 GHz . The 3 mm PQFN package is lead free and RoHS compliant.

Ordering Information ${ }^{1}$

Part Number	Package
MASW-011191-TR1000	1000 part Reel
MASW-011191-001SMB	Sample Board

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Names ${ }^{2,3}$

Pin \#	Function
$1,2,4,6,7,10,11,12,14,15$	No Connection
3	TX Input/Output
5	ANT Common Port
8	VDD/+5 V
9	GND
13	Vcntrl Control Input
16	RX Input/Output

2. MACOM recommends connecting unused package pins to ground.
3. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.
[^0]
Pin Description

Pin \#	Name	Description
1	NC	Not connected internally
2	NC	Not connected internally
3	TX	This pin is DC-decoupled and matched to 50ת. A DC-blocking capacitor is not be required on this pin
4	NC	Not connected internally
5	ANT	This pin is dc-decoupled and matched to 50』. A DC-blocking capacitor is not be required on this pin
6	NC	Not connected internally
7	NC	Not connected internally
8	VDD	Supply Voltage. Place bypass capacitor as close to pin as possible.
9	GND	This pin is grounded internally
10	NC	Not connected internally
11	NC	Not connected internally
12	NC	Not connected internally
13	Vcntrl	Switch Control Input
14	NC	Not connected internally
15	NC	Not connected internally
Paddle	GND	Exposed Pad. The exposed pad must be connected to a large RF/DC ground island providing thermal capabilies for heat dissipation.
16	This pin is DC-coupled and matched to 50ת. A DC-blocking capacitor is required on this pin when DC	
15		

Electrical Specifications: $P_{I N}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{Z}_{\mathbf{0}}=50 \Omega$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss, ANT to TX	1.0 GHz 2.5 GHz 5.0 GHz 6.0 GHz	dB	-	$\begin{aligned} & 0.32 \\ & 0.34 \\ & 0.45 \\ & 0.50 \end{aligned}$	$\begin{aligned} & \overline{0.9} \\ & 1.0 \\ & 1.2 \end{aligned}$
Insertion Loss, ANT to RX	1.0 GHz 2.5 GHz 5.0 GHz 6.0 GHz	dB	-	$\begin{aligned} & \hline 0.65 \\ & 0.50 \\ & 0.63 \\ & 0.75 \end{aligned}$	$\begin{aligned} & \overline{1.0} \\ & 1.2 \\ & 1.3 \end{aligned}$
Isolation, ANT to RX in TX Mode	1.0 GHz 2.5 GHz 5.0 GHz 6.0 GHz	dB	$\begin{aligned} & \overline{30} \\ & 26 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 39.5 \\ & 36.0 \\ & 31.0 \\ & 29.5 \end{aligned}$	-
Isolation, TX to RX in TX Mode	1.0 GHz 2.5 GHz 5.0 GHz 6.0 GHz	dB	-	$\begin{aligned} & \hline 39.0 \\ & 34.0 \\ & 29.0 \\ & 27.5 \end{aligned}$	-
Isolation, ANT to TX in RX Mode	1.0 GHz 2.5 GHz 5.0 GHz 6.0 GHz	dB	$\begin{aligned} & \overline{23} \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 36.0 \\ & 28.0 \\ & 19.0 \\ & 17.0 \end{aligned}$	-
Isolation, TX to RX in RX Mode	$\begin{aligned} & 1.0 \mathrm{GHz} \\ & 2.5 \mathrm{GHz} \\ & 5.0 \mathrm{GHz} \\ & \text { 6.0 GHz } \end{aligned}$	dB	-	$\begin{aligned} & 39.0 \\ & 32.5 \\ & 23.0 \\ & 20.0 \end{aligned}$	-
ANT Port Return Loss in TX Mode	1.0 GHz 2.5 GHz 5.0 GHz 6.0 GHz	dB	-	$\begin{aligned} & 22.0 \\ & 23.0 \\ & 23.0 \\ & 24.0 \end{aligned}$	-
ANT Port Return Loss in RX Mode	1.0 GHz 2.5 GHz 5.0 GHz 6.0 GHz	dB	-	$\begin{aligned} & 13.0 \\ & 20.0 \\ & 21.0 \\ & 21.0 \end{aligned}$	-
TX Port Return Loss in TX Mode	1.0 GHz 2.5 GHz 5.0 GHz 6.0 GHz	dB	-	$\begin{aligned} & 20.0 \\ & 23.0 \\ & 24.0 \\ & 23.5 \end{aligned}$	-
RX Port Return Loss in RX Mode	1.0 GHz 2.5 GHz 5.0 GHz 6.0 GHz	dB	-	$\begin{aligned} & 11.5 \\ & 20.0 \\ & 22.5 \\ & 21.5 \end{aligned}$	-
TX Input P0.1dB	$1-5 \mathrm{GHz}$	dBm	-	41	-
RX Input P0.1dB	$1-5 \mathrm{GHz}$	dBm	-	30.5	-
TX Input IP3	+34 dBm per tone, 10 MHz spacing 2.5 GHz	dBm	-	67.5	-
RX Input IP3	+34 dBm per tone, 10 MHz spacing 2.5 GHz	dBm	-	67.0	-

DC Electrical Specifications: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Switching Speed, TX Mode Ton Toff TRISE $\mathrm{T}_{\text {FALL }}$	50\% control to 90\% Voltage 50% control to 10% Voltage 10\% to 90% Voltage 90% to 10% Voltage	ns	-	$\begin{gathered} 410 \\ 135 \\ 140 \\ 45 \\ \hline \end{gathered}$	-
Switching Speed, RX Mode $\mathrm{T}_{\text {ON }}$ $\mathrm{T}_{\text {OFF }}$ $\mathrm{T}_{\text {RISE }}$ $\mathrm{T}_{\text {FALL }}$	50\% control to 90\% Voltage 50% control to 10% Voltage 10% to 90% Voltage 90\% to 10\% Voltage	ns	-	$\begin{aligned} & 190 \\ & 80 \\ & 40 \\ & 26 \\ & \hline \end{aligned}$	-
Supply Voltage, VDD	-	V	+4.75	+5.0	+5.25
VDD Quiescent Current	TX Mode RX Mode	mA	-	$\begin{aligned} & 1.4 \\ & 1.0 \end{aligned}$	-
Vcntrl Control Voltage	Logic High, V_{IH} Logic Low, $\mathrm{V}_{\text {IL }}$	V	-	$\begin{gathered} +1.8 \\ 0 \end{gathered}$	-
T/R Logic Input Current	Logic High, V_{IH} Logic Low, $\mathrm{V}_{\text {IL }}$	$\mu \mathrm{A}$	-	$\begin{gathered} \hline 40 \\ 0.04 \end{gathered}$	-

Truth Table

Control Input	T/R Path	
VcntrI	RX	TX
V_{IH}	On	Off
V_{IL}	Off	On

Recommended Operating Conditions

Parameter	Maximum
Input Power, TX Path	37 dBm LTE
	$(7 \mathrm{~dB}$ PAR)
	40 dBm CW
Input Power, RX Path	26 dBm LTE
	$(7 \mathrm{~dB} \mathrm{PAR})$
	29 dBm CW
DC Supply VDD	4.75 V to 5.25 V
Junction Temperature 4	$125^{\circ} \mathrm{C}$
Operating Temperature 5,6	$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$

4. Junction Temperature $\left(T_{J}\right)=T_{C}+\Theta j c *\left(V{ }^{*} I\right)$, Typical thermal resistance Өjc $=9.8^{\circ} \mathrm{C} / \mathrm{W}$.
5. Operating at nominal conditions with $\mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$ will ensure MTTF >> 1×10^{6} hours
6. Operating/Case temperature $\left(T_{C}\right)$ is the temperature of the exposed paddle.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1C, CDM Class C3 devices.

Absolute Maximum Ratings ${ }^{7,8,9}$

Parameter	Absolute Maximum
Antenna Input Power	39 dBm LTE
Freq. $=3.75 \mathrm{GHz}$: TX Mode	$(8 \mathrm{~dB}$ PAR)
Antenna Input Power	22 dBm CW
Freq. $=3.75 \mathrm{dHz}$ LTE RX Mode	$(8 \mathrm{~dB}$ PAR)
DC Supply VDD	31 dBm CW
Control Voltage	-0.5 V to 5.5 V
Junction Temperature ${ }^{4}$	-0.5 V to 2.75 V
Storage Temperature	$140^{\circ} \mathrm{C}$

7. Exceeding any one or combination of these limits may cause permanent damage to this device.
8. MACOM does not recommend sustained operation near these survivability limits.
9. Single event, up to 10 seconds duration.

PCB Layout

Parts List

Part	Value	Case Style
C1	10 pF	0402
C2	1000 pF	0402
C3	$1 \mu \mathrm{~F}$	0402
C4	6.2 pF	0402
C5	DNP	0402
C6	5 pF	0402
R1,R2	0Ω	0402
J1 - J5	$142-0761-841$	SMA, End Launch

Application Schematic

Typical Performance Curves

Insertion Loss, ANT to TX

Isolation, ANT to RX in TX Mode

Isolation, TX to RX in TX Mode

Insertion Loss, ANT to RX

Isolation, ANT to TX in RX Mode

Isolation, RX to $T X$ in RX Mode

Typical Performance Curves

ANT Return Loss in TX Mode

TX Return Loss

ANT Return Loss in RX Mode

RX Return Loss

Lead-Free 3 mm 16-Lead PQFN ${ }^{\dagger}$

[^1]MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

[^0]: * Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

[^1]: ${ }^{\dagger}$ Reference Application Note S2083 for lead-free solder reflow recommendations.
 Meets JEDEC moisture sensitivity level 1 requirements in accordance to JEDEC J-STD-020D.
 Plating is NiPdAu over Copper

