AlGaAs SP2T PIN Diode Switch with integrated bias circuits
Wideband, 80 - 100 GHz

Features
- 80 - 100 GHz Broadband Operating Frequency
- 0.8 dB Insertion Loss
- 25 dB Isolation
- Silicon Nitride Passivation
- BCB Scratch Protection
- Lead-Free AlGaAs MMIC Die
- Die Size: 1.33 x 1.055 x 0.1 mm
- RoHS* Compliant

Applications
- ISM / MM

Description
The MASW-011111-DIE is a wideband SP2T switch manufactured using MACOM’s patented AlGaAs PIN Diode MMIC process on a semi-insulating GaAs substrate. The device is fully passivated with silicon nitride and has an additional layer of BCB for scratch protection. This protective coating prevents damage to the circuit during automated or manual handling. These devices are suitable for pick and place insertion.

Each RF port contains DC blocking capacitors and a DC bias circuit consisting of high impedance lines and RF radial stubs. This device has gold plated bonding pads at all RF and DC ports. RF and DC ground backside gold plating allows conventional chip bonding techniques using 80Au/20Sn solder, Indalloy solder, or electrically conductive silver epoxy.

Applications include satellite communications, millimeter-wave radar, and 94 GHz imaging in astronomy, defense, and security applications.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASW-011111-DIE</td>
<td>Waffle Pak</td>
</tr>
</tbody>
</table>

1. The die backside must be connected to RF, DC and thermal ground.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

For further information and support please visit:
https://www.macom.com/support

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Visit www.macom.com for additional data sheets and product information.
DC-0018899
AlGaAs SP2T PIN Diode Switch with integrated bias circuits
Wideband, 80 - 100 GHz

MASW-01111-DIE
Rev. V1

Electrical Specifications: $T_A = 25^\circ C$, $+10 \ mA / -4.5 \ V$, $Z_0 = 50 \ \Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>80 - 100 GHz</td>
<td>dB</td>
<td>—</td>
<td>0.8</td>
<td>—</td>
</tr>
<tr>
<td>Isolation</td>
<td>80 - 100 GHz</td>
<td>dB</td>
<td>—</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>RF\text{COMMON} Return Loss</td>
<td>80 - 100 GHz</td>
<td>dB</td>
<td>—</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>RF1, RF2 Return Loss</td>
<td>80 - 100 GHz</td>
<td>dB</td>
<td>—</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Forward Bias</td>
<td>10 mA</td>
<td>V</td>
<td>—</td>
<td>1.34</td>
<td>—</td>
</tr>
<tr>
<td>Switching Speed</td>
<td>10% - 90% RF Voltage</td>
<td>ns</td>
<td>—</td>
<td>20</td>
<td>—</td>
</tr>
</tbody>
</table>

Truth Table & Bias Conditions

<table>
<thead>
<tr>
<th>RF Inputs</th>
<th>Bias1</th>
<th>Bias2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF\text{COMMON} to RF1</td>
<td>-4.5 V^2</td>
<td>10 mA3</td>
</tr>
<tr>
<td>RF\text{COMMON} to RF2</td>
<td>10 mA3</td>
<td>-4.5 V^2</td>
</tr>
</tbody>
</table>

2. Minimum reverse bias voltage (V_R) should be determined based on working conditions. For example, $V_R = -4.5 \ V @ 23 \ dBm$ input power. For lower power applications, a less negative voltage can be used. R. Caverly and G. Hiller, “Establishing the Minimum Reverse Bias for a PIN Diode in a High Power Switch,” IEEE Transactions on Microwave Theory and Techniques, Vol.38, No.12, December 1990. For higher linearity the V_R may be increased to -25 V.

3. Forward bias current (I_F) is set using external bias resistors (R_{BIAS}) placed at pins Bias1 and Bias2, where $R_{BIAS} = (V_{CC} - 1.32 \ V) / I_F$.

Absolute Maximum Ratings4,5

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>30 dBm</td>
</tr>
<tr>
<td>Forward Bias Current</td>
<td>15 mA</td>
</tr>
<tr>
<td>Reverse Bias Voltage</td>
<td>-50 V</td>
</tr>
<tr>
<td>Junction Temperature6</td>
<td>+150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-55°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 0 devices.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
AlGaAs SP2T PIN Diode Switch with integrated bias circuits
Wideband, 80 - 100 GHz

Typical Performance Curves

Insertion Loss RF_{COMMON} to RFx

Isolation RF_{COMMON} to RFx

RF_{COMMON} Return Loss in ON State

RFx Return Loss in On State
AlGaAs SP2T PIN Diode Switch with integrated bias circuits
Wideband, 80 - 100 GHz

Solder Die Attach
All die attach and bonding methods should be compatible with gold metal. Solder which does not scavenge gold, such as 80 Au/20 Sn or Indalloy #2, is recommended. Do not expose die to a temperature greater than 300°C for more than 10 seconds.

Electrically Conductive Epoxy
Die Attach
Assembly can be preheated to approximately 125°C. Use a controlled thickness of approximately 1 mils for best electrical conductivity and lower thermal resistance. A thin epoxy fillet should be visible around the perimeter of the chip after placement. Cure epoxy per manufacturer’s schedule. For extended cure times, temperatures should be kept below 150°C.

Wire / Ribbon Bonding
Wedge thermo compression bonding may be used to attach ribbons to the RF bonding pads. Gold ribbons should be at least 1/4 by 2 mil for lowest inductance. The same gold ribbon or 1 mil dia. gold wire is recommended for all DC pads.
AlGaAs SP2T PIN Diode Switch with integrated bias circuits
Wideband, 80 - 100 GHz

MACOM Technology Solutions Inc. (“MACOM”). All rights reserved.
These materials are provided in connection with MACOM’s products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

For further information and support please visit:
https://www.macom.com/support