Features
- Low Loss: 0.9 dB, 16 to 35 GHz
- High Isolation: 32 dB, 16 to 35 GHz
- 30 dBm CW Power Handling @ +85°C
- Switching Speed <34 ns
- Integrated DC Blocks and RF Bias Networks
- Die with G-S-G RF Pads and DC Bias Pads
- RoHS* Compliant

Description and Applications
The MASW-011087 is a high power, symmetrical SP4T switch. This broadband, reflective switch was developed for Ka-Band applications that require up to 30 dBm (1 W) power handling while maintaining low insertion loss, high isolation, and fast switching speed. These switches are used in switching arrays of radars systems, radiometers, test equipment, Point-to-Point communications systems and other high frequency applications.

The SP4T MMIC utilizes MACOM’s proven AlGaAs PIN diode technology. The switch is fully passivated with silicon nitride and has an added polymer layer for scratch protection. The protective coating prevents damage to the junction and the air-bridges during handling and assembly. The die has backside metallization to facilitate an epoxy die attach process.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASW-011087-DIE</td>
<td>Die in Waffle Tray</td>
</tr>
<tr>
<td>MASW-011087-SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

AlGaAs SP4T Reflective PIN Diode Switch
14 - 38 GHz

Electrical Specifications: $T_A = 25°C$, $V_R = -10$ V, $I_{SH} = +5$ mA, $I_{SE} = +5$ mA, $Z_0 = 50 \Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>20.0 GHz, 28.5 GHz, 35.0 GHz</td>
<td>dB</td>
<td>0.8</td>
<td>0.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Isolation</td>
<td>20.0 GHz, 28.5 GHz, 35.0 GHz</td>
<td>dB</td>
<td>40</td>
<td>34</td>
<td>31</td>
</tr>
<tr>
<td>Return Loss</td>
<td>20.0 GHz, 28.5 GHz, 35.0 GHz</td>
<td>dB</td>
<td>18</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Return Loss (RFX ON state)</td>
<td>20.0 GHz, 28.5 GHz, 35.0 GHz</td>
<td>dB</td>
<td>18</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>CW Power Handling (ON state)</td>
<td>28.5 GHz</td>
<td>dBm</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching Speed T_{RISE} / T_{FALL}</td>
<td>10% - 90% RF, 26.5 GHz</td>
<td>ns</td>
<td>10 / 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching Speed T_{ON} / T_{OFF}</td>
<td>50% control to 90% RF, 26.5 GHz</td>
<td>ns</td>
<td>26 / 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIP3</td>
<td>27 - 32 GHz, $P_{IN} = 10$ dBm, Tone Spacing 10 MHz</td>
<td>dBm</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{0.1\text{dB}}$</td>
<td>29.5 GHz</td>
<td>dBm</td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings^{1,2,3}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incident Power (ON path)</td>
<td>30 dBm</td>
</tr>
<tr>
<td>I_{SE}</td>
<td>20 mA</td>
</tr>
<tr>
<td>I_{SH}</td>
<td>20 mA</td>
</tr>
<tr>
<td>V_R</td>
<td>-50 V</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55°C to +150°C</td>
</tr>
</tbody>
</table>

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM class 1A devices.

1. Exceeding any one or combination of these limits may cause permanent damage to this device.
2. MACOM does not recommend sustained operation near these survivability limits.
3. Operating at nominal conditions with junction temperature less than 150°C will ensure MTTF $>10^6$ hours.
AlGaAs SP4T Reflective PIN Diode Switch
14 - 38 GHz

Recommended Board Schematic

<table>
<thead>
<tr>
<th>Component Designator</th>
<th>Description</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC, RF1, RF2, RF3, RF4</td>
<td>2.4 mm - Southwest Microwave connector</td>
<td>1492-04A-5</td>
</tr>
<tr>
<td>B1, B2, B3, B4</td>
<td>Johnson/Emerson RF connector Or SSMA - Southwest Microwave connector</td>
<td>142-0761-821</td>
</tr>
<tr>
<td>C1, C2, C3, C4</td>
<td>22 pF High Frequency Capacitor</td>
<td>ATC600L220</td>
</tr>
</tbody>
</table>
Recommended Board Application Schematic

The schematic shown below depicts the switch in ON state of the RF\text{COMMON} to RF1 and all remaining RF inputs in OFF state.

\begin{center}
\includegraphics[width=\textwidth]{schematic.png}
\end{center}

I_{SE} - the forward bias current of a series diode

I_{SH} - the forward bias current of a shunt diode

V_R - the voltage of a reverse biased shunt diode as well as the voltage of a forward biased series diode

V_{CC} - the voltage of forward biased shunt diodes

To calculate off–chip bias resistors required:

\begin{align*}
R1 &= (|V_R| - 2.64 \text{ V}) / I_{SE} \\
R2 &= (V_{CC} - 1.32 \text{ V}) / (3 \times I_{SH})
\end{align*}

For example, using standard resistor values with $V_{CC} = +5 \text{ V}$ and $V_R = -10 \text{ V}$:

\begin{align*}
R1 &= (10 \text{ V} - 2.64 \text{ V}) / 0.005 \text{ A} = 1470 \Omega \\
R2 &= (5 \text{ V} - 1.32 \text{ V}) / (3 \times 0.005 \text{ A}) = 246 \Omega
\end{align*}

Truth Table

<table>
<thead>
<tr>
<th>State</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF\text{COMMON} to RF1 ON</td>
<td>-10 V (-5 mA)</td>
<td>+5 mA</td>
<td>+5 mA</td>
<td>+5 mA</td>
</tr>
<tr>
<td>RF\text{COMMON} to RF2 ON</td>
<td>+5 mA</td>
<td>-10 V (-5 mA)</td>
<td>+5 mA</td>
<td>+5 mA</td>
</tr>
<tr>
<td>RF\text{COMMON} to RF3 ON</td>
<td>+5 mA</td>
<td>+5 mA</td>
<td>-10 V (-5 mA)</td>
<td>+5 mA</td>
</tr>
<tr>
<td>RF\text{COMMON} to RF4 ON</td>
<td>+5 mA</td>
<td>+5 mA</td>
<td>+5 mA</td>
<td>-10 V (-5 mA)</td>
</tr>
</tbody>
</table>
Typical Performance Curves

Insertion Loss

- RF1
- RF2
- RF3
- RF4

RF 1, 2, 3, 4 Return Loss in On State

- RF1
- RF2
- RF3
- RF4

Insertion Loss over Temperature

- +25°C
- -40°C
- +85°C

RFCOMMON Return Loss in ON State

- RF1
- RF2
- RF3
- RF4

Insertion Loss over Bias Current

- 5 mA
- 7 mA
- 10 mA

RFCOMMON Return Loss in ON State over Bias Current

- 5 mA
- 7 mA
- 10 mA

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
Typical Performance Curves

Isolation R_{COMMON} to RF2, RF3 over Temperature

Isolation R_{COMMON} to RF1, RF4 over Temperature

Compression over Reverse-Bias Voltage @ 29.5 GHz

IIP3 over Temperature @ 5 V / 5 mA
NOTES:
1. UNLESS OTHERWISE SPECIFIED, ALL DIMENSIONS SHOWN AS UM WITH A TOLERANCE OF ±5UM.
2. DIE THICKNESS IS 100 ±12.5UM