MASW-009588

GaAs SP2T Switch
DC - 4.0 GHz

Features
- Insertion Loss: 0.35 dB @ 1 GHz
- Lead-Free 1 mm 6-Lead PDFN Package
- Halogen-Free “Green” Mold Compound
- RoHS* Compliant and 260°C Reflow Compatible

Description
The MASW-009588 is a GaAs pHEMT MMIC single pole two throw (SP2T) switch in a miniature 1x1mm 6-lead PDFN package. The MASW-009588 is ideally suited for applications where low control voltage, low insertion loss, moderate isolation, and small size are required.

Typical applications are for filter and antenna switching in handset systems that connect separate receive functions to a common antenna, as well as other related handset and general purpose applications. This part can be used in all systems operating up to 4 GHz requiring high power at low control voltage.

The MASW-009588 is fabricated using a 0.5 micron gate length GaAs pHEMT process. The process features full passivation for performance and reliability.

Functional Diagram

Pin Configuration

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RF1</td>
<td>RF Port 1</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>RF2</td>
<td>RF Port 2</td>
</tr>
<tr>
<td>4</td>
<td>V2</td>
<td>Control 2</td>
</tr>
<tr>
<td>5</td>
<td>RFC</td>
<td>RF Common</td>
</tr>
<tr>
<td>6</td>
<td>V1</td>
<td>Control 1</td>
</tr>
</tbody>
</table>

Ordering Information 1,2

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASW-009588-000000</td>
<td>Bulk</td>
</tr>
<tr>
<td>MASW-009588-TR3000</td>
<td>3000 piece reel</td>
</tr>
<tr>
<td>MASW-009588-001SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings 3,4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Input Power (0.5 - 4 GHz, 2.6V Control)</td>
<td>+33 dBm</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>+5 volts</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

3. Exceeding any one or combination of these limits may cause permanent damage to this device.
4. M/A-COM Technology does not recommend sustained operation near these survivability limits.

GaAs SP2T Switch
DC - 4.0 GHz

Electrical Specifications: $T_A = 25^\circ C$, $V_C = 2.6V$, $Z_0 = 50 \, \Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>1 GHz</td>
<td>dB</td>
<td>0.35</td>
<td>0.45</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>2 GHz</td>
<td></td>
<td>0.5</td>
<td>0.65</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>3 GHz</td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation</td>
<td>1 GHz</td>
<td>dB</td>
<td>23</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 GHz</td>
<td></td>
<td>17</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 GHz</td>
<td></td>
<td>13</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 GHz</td>
<td></td>
<td>11</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>VSWR</td>
<td>DC - 4 GHz</td>
<td>dB</td>
<td>—</td>
<td><1.3</td>
<td>—</td>
</tr>
<tr>
<td>IP3</td>
<td>Two Tone +10 dBm, 5 MHz Spacing, >500 MHz $P_{IN} = 10$ dBm $V_C = 0/2.6$ V</td>
<td>dBm</td>
<td>—</td>
<td>55</td>
<td>—</td>
</tr>
<tr>
<td>P0.1dB</td>
<td>$V_C = 0V/2.6V$</td>
<td>dBm</td>
<td>—</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>P1dB</td>
<td>$V_C = 0V/2.6V$</td>
<td>dBm</td>
<td>—</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>2nd Harmonic</td>
<td>1 GHz, +16 dBm</td>
<td>dBc</td>
<td>—</td>
<td>83</td>
<td>—</td>
</tr>
<tr>
<td>3rd Harmonic</td>
<td>1 GHz, +16 dBm</td>
<td>dBc</td>
<td>—</td>
<td>93</td>
<td>—</td>
</tr>
<tr>
<td>Trise, Tfall</td>
<td>10% to 90% RF, 90% to 10% RF</td>
<td>ns</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Ton, Toff</td>
<td>50% control to 90% RF, and 50% control to 10% RF</td>
<td>ns</td>
<td>—</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Transients</td>
<td>In Band</td>
<td>mV</td>
<td>—</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Gate Leakage</td>
<td>$</td>
<td>V_C</td>
<td>= 2.6V$</td>
<td>µA</td>
<td>—</td>
</tr>
</tbody>
</table>

5. Insertion Loss can be optimized by varying the DC Blocking Capacitor value, ie. 1000 pF for 100 - 500 MHz, 39 pF for 0.5 - 4.0 GHz

Recommended PCB

Off-Chip Component Values

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C4</td>
<td>100 pF</td>
<td>0201</td>
</tr>
<tr>
<td>C2, C3, C5</td>
<td>39 pF</td>
<td>0201</td>
</tr>
<tr>
<td>R1, R2</td>
<td>0 Ω</td>
<td>0201</td>
</tr>
</tbody>
</table>

Truth Table

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
<th>RFC - RF1</th>
<th>RFC - RF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1.6 to 3.5 V</td>
<td>0 ± 0.2 V</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>0 ± 0.2 V</td>
<td>+1.6 to 3.5 V</td>
<td>Off</td>
<td>On</td>
</tr>
</tbody>
</table>

6. External DC blocking capacitors are required on all RF ports
7. Minimum Control Voltage Delta of 1.6V required
GaAs SP2T Switch
DC - 4.0 GHz

Typical Performance Curves, \(V_{\text{CTL}} = 0/\pm 2.6 \text{ V}_{\text{DC}} \)

Insertion Loss

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
\hline
\text{Frequency (GHz)} & \text{+25°C} & \text{-40°C} & \text{+85°C} \\
0.5 & -0.8 & -0.7 & -0.6 \\
1.0 & -0.7 & -0.6 & -0.5 \\
1.5 & -0.6 & -0.5 & -0.4 \\
2.0 & -0.5 & -0.4 & -0.3 \\
2.5 & -0.4 & -0.3 & -0.2 \\
3.0 & -0.3 & -0.2 & -0.1 \\
3.5 & -0.2 & -0.1 & 0.0 \\
4.0 & -0.1 & 0.0 & 0.1 \\
\hline
\end{array}
\]

Isolation

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
\hline
\text{Frequency (GHz)} & \text{+25°C} & \text{-40°C} & \text{+85°C} \\
0.5 & -25 & -20 & -15 \\
1.0 & -20 & -15 & -10 \\
1.5 & -15 & -10 & -5 \\
2.0 & -10 & -5 & 0 \\
2.5 & -5 & 0 & 5 \\
3.0 & 0 & 5 & 10 \\
3.5 & 5 & 10 & 15 \\
4.0 & 10 & 15 & 20 \\
\hline
\end{array}
\]

Input Return Loss

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
\hline
\text{Frequency (GHz)} & \text{+25°C} & \text{-40°C} & \text{+85°C} \\
0.5 & -35 & -30 & -25 \\
1.0 & -30 & -25 & -20 \\
1.5 & -25 & -20 & -15 \\
2.0 & -20 & -15 & -10 \\
2.5 & -15 & -10 & -5 \\
3.0 & -10 & -5 & 0 \\
3.5 & -5 & 0 & 5 \\
4.0 & 0 & 5 & 10 \\
\hline
\end{array}
\]

Output Return Loss

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
\hline
\text{Frequency (GHz)} & \text{+25°C} & \text{-40°C} & \text{+85°C} \\
0.5 & -40 & -35 & -30 \\
1.0 & -35 & -30 & -25 \\
1.5 & -30 & -25 & -20 \\
2.0 & -25 & -20 & -15 \\
2.5 & -20 & -15 & -10 \\
3.0 & -15 & -10 & -5 \\
3.5 & -10 & -5 & 0 \\
4.0 & -5 & 0 & 5 \\
\hline
\end{array}
\]

Output Power vs. Input Power @ 2.5 GHz

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
\hline
\text{Input Power (dBm)} & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 & 32 \\
\text{Output Power (dBm)} & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 & 32 \\
\hline
\end{array}
\]
PCB Land Pattern

Qualification

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Lead-Free 1 mm 6-Lead PDFN†

†Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is 100% matte tin over copper.
GaAs SP2T Switch
DC - 4.0 GHz

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

For further information and support please visit: https://www.macom.com/support