Digital Phase Shifter
6-Bit, 3.5 - 6.0 GHz

Features
- 6 Bit Digital Phase Shifter
- 360° Coverage with LSB = 5.6°
- Low DC Power Consumption
- Minimal Attenuation Variation over Phase Shift Range
- 50 Ω Impedance
- EAR99
- RoHS* Compliant

Description
The MAPS-010165-DIE is a GaAs pHEMT 6-bit digital phase shifter. Step size is 5.6° providing phase shift from 0° to 360° in 5.6° steps. This design has been optimized to minimize variation in attenuation over the phase shift range.

The MAPS-010165-DIE is ideally suited for use where high phase accuracy with minimum loss variation over the phase shift range are required. Typical applications include communications antennas and phased array radars.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPS-010165-DIE</td>
<td>50 piece Gel Pak</td>
</tr>
</tbody>
</table>

Functional Schematic

Pad Configuration

<table>
<thead>
<tr>
<th>Pad #</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 16</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>RF_in</td>
<td>RF Input</td>
</tr>
<tr>
<td>3</td>
<td>A1</td>
<td>5.6° Control</td>
</tr>
<tr>
<td>4</td>
<td>B1</td>
<td>5.6° Control</td>
</tr>
<tr>
<td>5</td>
<td>A2</td>
<td>11.2° Control</td>
</tr>
<tr>
<td>6</td>
<td>B2</td>
<td>11.2° Control</td>
</tr>
<tr>
<td>7</td>
<td>A3</td>
<td>22.5° Control</td>
</tr>
<tr>
<td>8</td>
<td>B3</td>
<td>22.5° Control</td>
</tr>
<tr>
<td>9</td>
<td>A4</td>
<td>45° Control</td>
</tr>
<tr>
<td>10</td>
<td>B4</td>
<td>45° Control</td>
</tr>
<tr>
<td>11</td>
<td>A5</td>
<td>90° Control</td>
</tr>
<tr>
<td>12</td>
<td>B5</td>
<td>90° Control</td>
</tr>
<tr>
<td>13</td>
<td>A6</td>
<td>180° Control</td>
</tr>
<tr>
<td>14</td>
<td>B6</td>
<td>180° Control</td>
</tr>
<tr>
<td>15</td>
<td>RF_out</td>
<td>RF Output</td>
</tr>
</tbody>
</table>

1. The backside of the die must be connected to RF, DC, and thermal ground.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.
Electrical Specifications: Freq. = 3.5 - 6.0 GHz, $T_A = 25^\circ C$, $Z_0 = 50 \, \Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>Any Phase State 3.5 GHz 6.0 GHz</td>
<td>dB</td>
<td>4.9</td>
<td>5.8</td>
<td>6.5</td>
</tr>
<tr>
<td>Attenuation Variation</td>
<td>Across All Phase States</td>
<td>dB</td>
<td>—</td>
<td>± 0.8</td>
<td>—</td>
</tr>
<tr>
<td>RMS Attenuation Error 2</td>
<td>All Values Relative to Insertion Loss at Reference Phase</td>
<td>dB</td>
<td>—</td>
<td>0.4</td>
<td>—</td>
</tr>
<tr>
<td>RMS Phase Error 2</td>
<td>All Values Relative to Reference Phase</td>
<td>deg.</td>
<td>—</td>
<td>4</td>
<td>—</td>
</tr>
</tbody>
</table>

Phase Relative to Reference Loss State
- 5.6° Bit
- 11.2° Bit
- 22.5° Bit
- 45° Bit
- 90° Bit
- 180° Bit
- Sum of All Bits

deg. 4.7
10.5
23
42.5
90
182
352

VSWR
RF IN RF OUT
Ratio 1.5:1
1.5:1

1 dB Compression
Reference State
dBm 27

Input IP3
Two-tone inputs up to 5 dBm
dBm 40

T_{RISE}, T_{FALL}
10% to 90% RF, 90% to 10% RF
ns 50

V_L
LOW-level input voltage
V -5

V_H
HIGH-level input voltage
V 0

2. RMS is calculated across all 63 amplitude or phase states relative to the amplitude or phase in the 0° phase state at a given frequency.
Digital Phase Shifter
6-Bit, 3.5 - 6.0 GHz

Truth Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>27 dBm</td>
</tr>
<tr>
<td>3.5 - 6.0 GHz</td>
<td></td>
</tr>
<tr>
<td>Operating Temp</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temp</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support
Typical Performance Curves

RF_{in} Return Loss vs. Frequency (All States)

![RF_{in} Return Loss vs. Frequency (All States)](image)

RF_{out} Return Loss vs. Frequency (All States)

![RF_{out} Return Loss vs. Frequency (All States)](image)

Mean RMS Phase Error vs. Frequency

![Mean RMS Phase Error vs. Frequency](image)

Mean RMS Amplitude Error vs. Frequency

![Mean RMS Amplitude Error vs. Frequency](image)

Phase Error vs. State

![Phase Error vs. State](image)

Amplitude Error vs. State

![Amplitude Error vs. State](image)
Typical Performance Curves

Amplitude Variation vs. Phase State

Phase Shift vs. Frequency (All States)
Outline Drawing \(^{6,7,8,9}\)

6. Unless otherwise specified, all dimensions are um with a tolerance of ±5 µm.
7. Die thickness is 100 ±10 µm.
9. Die size reflects uncut dimensions. Saw or laser kerf reduces die size by ~25 µm each dimension.
Digital Phase Shifter
6-Bit, 3.5 - 6.0 GHz

MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc (“MACOM”) products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

For further information and support please visit: https://www.macom.com/support

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.